Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.18725
Cited By
The Evolution of the Interplay Between Input Distributions and Linear Regions in Networks
28 October 2023
Xuan Qi
Yi Wei
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Evolution of the Interplay Between Input Distributions and Linear Regions in Networks"
22 / 22 papers shown
Title
On the Number of Regions of Piecewise Linear Neural Networks
Alexis Goujon
Arian Etemadi
M. Unser
75
16
0
17 Jun 2022
Lower and Upper Bounds for Numbers of Linear Regions of Graph Convolutional Networks
Hao Chen
Yu Wang
Huan Xiong
GNN
49
6
0
01 Jun 2022
GhostNets on Heterogeneous Devices via Cheap Operations
Kai Han
Yunhe Wang
Chang Xu
Jianyuan Guo
Chunjing Xu
Enhua Wu
Qi Tian
33
106
0
10 Jan 2022
Using activation histograms to bound the number of affine regions in ReLU feed-forward neural networks
Peter Hinz
34
6
0
31 Mar 2021
Deep ReLU Networks Have Surprisingly Few Activation Patterns
Boris Hanin
David Rolnick
81
227
0
03 Jun 2019
Complexity of Linear Regions in Deep Networks
Boris Hanin
David Rolnick
44
232
0
25 Jan 2019
ChannelNets: Compact and Efficient Convolutional Neural Networks via Channel-Wise Convolutions
Hongyang Gao
Zhengyang Wang
Shuiwang Ji
34
70
0
05 Sep 2018
Sensitivity and Generalization in Neural Networks: an Empirical Study
Roman Novak
Yasaman Bahri
Daniel A. Abolafia
Jeffrey Pennington
Jascha Narain Sohl-Dickstein
AAML
93
439
0
23 Feb 2018
Which Neural Net Architectures Give Rise To Exploding and Vanishing Gradients?
Boris Hanin
62
254
0
11 Jan 2018
Bounding and Counting Linear Regions of Deep Neural Networks
Thiago Serra
Christian Tjandraatmadja
Srikumar Ramalingam
MLT
65
250
0
06 Nov 2017
Optimal approximation of piecewise smooth functions using deep ReLU neural networks
P. Petersen
Felix Voigtländer
223
475
0
15 Sep 2017
Exploring Generalization in Deep Learning
Behnam Neyshabur
Srinadh Bhojanapalli
David A. McAllester
Nathan Srebro
FAtt
148
1,256
0
27 Jun 2017
The power of deeper networks for expressing natural functions
David Rolnick
Max Tegmark
156
174
0
16 May 2017
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
1.1K
20,837
0
17 Apr 2017
Understanding Deep Neural Networks with Rectified Linear Units
R. Arora
A. Basu
Poorya Mianjy
Anirbit Mukherjee
PINN
146
641
0
04 Nov 2016
Error bounds for approximations with deep ReLU networks
Dmitry Yarotsky
195
1,227
0
03 Oct 2016
Why does deep and cheap learning work so well?
Henry W. Lin
Max Tegmark
David Rolnick
79
607
0
29 Aug 2016
On the Expressive Power of Deep Neural Networks
M. Raghu
Ben Poole
Jon M. Kleinberg
Surya Ganguli
Jascha Narain Sohl-Dickstein
61
788
0
16 Jun 2016
The Power of Depth for Feedforward Neural Networks
Ronen Eldan
Ohad Shamir
216
732
0
12 Dec 2015
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
323
18,613
0
06 Feb 2015
On the Number of Linear Regions of Deep Neural Networks
Guido Montúfar
Razvan Pascanu
Kyunghyun Cho
Yoshua Bengio
88
1,254
0
08 Feb 2014
On the number of response regions of deep feed forward networks with piece-wise linear activations
Razvan Pascanu
Guido Montúfar
Yoshua Bengio
FAtt
117
257
0
20 Dec 2013
1