Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.18554
Cited By
v1
v2
v3 (latest)
Improved Regret Bounds of (Multinomial) Logistic Bandits via Regret-to-Confidence-Set Conversion
28 October 2023
Junghyun Lee
Se-Young Yun
Kwang-Sung Jun
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Improved Regret Bounds of (Multinomial) Logistic Bandits via Regret-to-Confidence-Set Conversion"
11 / 11 papers shown
Title
Linear Bandits with Non-i.i.d. Noise
Baptiste Abeles
Eugenio Clerico
Hamish Flynn
Gergely Neu
32
0
0
26 May 2025
Neural Logistic Bandits
Seoungbin Bae
Dabeen Lee
527
0
0
04 May 2025
Confidence Sequences for Generalized Linear Models via Regret Analysis
Eugenio Clerico
Hamish Flynn
W. Kotłowski
Gergely Neu
81
2
0
23 Apr 2025
Optimal Design for Reward Modeling in RLHF
Antoine Scheid
Etienne Boursier
Alain Durmus
Michael I. Jordan
Pierre Ménard
Eric Moulines
Michal Valko
OffRL
148
9
0
22 Oct 2024
A Unified Confidence Sequence for Generalized Linear Models, with Applications to Bandits
Junghyun Lee
Se-Young Yun
Kwang-Sung Jun
197
6
0
19 Jul 2024
Bandits with Preference Feedback: A Stackelberg Game Perspective
Barna Pásztor
Parnian Kassraie
Andreas Krause
75
4
0
24 Jun 2024
Nearly Minimax Optimal Regret for Multinomial Logistic Bandit
Joongkyu Lee
Min-hwan Oh
93
7
0
16 May 2024
Generalized Linear Bandits with Limited Adaptivity
Ayush Sawarni
Nirjhar Das
Siddharth Barman
Gaurav Sinha
191
5
0
10 Apr 2024
Tighter Confidence Bounds for Sequential Kernel Regression
H. Flynn
David Reeb
58
3
0
19 Mar 2024
Active Preference Optimization for Sample Efficient RLHF
Nirjhar Das
Souradip Chakraborty
Aldo Pacchiano
Sayak Ray Chowdhury
158
22
0
16 Feb 2024
Noise-Adaptive Confidence Sets for Linear Bandits and Application to Bayesian Optimization
Kwang-Sung Jun
Jungtaek Kim
66
2
0
12 Feb 2024
1