ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.18278
  4. Cited By
Navigating protein landscapes with a machine-learned transferable
  coarse-grained model

Navigating protein landscapes with a machine-learned transferable coarse-grained model

27 October 2023
N. Charron
Felix Musil
Andrea Guljas
Yaoyi Chen
Klara Bonneau
Aldo S. Pasos-Trejo
Jacopo Venturin
Daria Gusew
I. Zaporozhets
Andreas Krämer
Clark Templeton
Atharva S Kelkar
Aleksander E. P. Durumeric
Simon Olsson
Adria Pérez
Maciej Majewski
B. Husic
Ankit Patel
Gianni De Fabritiis
Frank Noé
C. Clementi
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Navigating protein landscapes with a machine-learned transferable coarse-grained model"

19 / 19 papers shown
Title
Predicting solvation free energies with an implicit solvent machine learning potential
Predicting solvation free energies with an implicit solvent machine learning potential
Sebastien Röcken
A. F. Burnet
Julija Zavadlav
AI4ClAI4CE
155
5
0
31 May 2024
Scaling the leading accuracy of deep equivariant models to biomolecular
  simulations of realistic size
Scaling the leading accuracy of deep equivariant models to biomolecular simulations of realistic size
Albert Musaelian
A. Johansson
Simon L. Batzner
Boris Kozinsky
75
55
0
20 Apr 2023
Ewald-based Long-Range Message Passing for Molecular Graphs
Ewald-based Long-Range Message Passing for Molecular Graphs
Arthur Kosmala
Johannes Gasteiger
Nicholas Gao
Stephan Günnemann
122
30
0
08 Mar 2023
Statistically Optimal Force Aggregation for Coarse-Graining Molecular
  Dynamics
Statistically Optimal Force Aggregation for Coarse-Graining Molecular Dynamics
Andreas Krämer
Aleksander E. P. Durumeric
N. Charron
Yaoyi Chen
C. Clementi
Frank Noé
AI4CE
65
20
0
14 Feb 2023
Two for One: Diffusion Models and Force Fields for Coarse-Grained
  Molecular Dynamics
Two for One: Diffusion Models and Force Fields for Coarse-Grained Molecular Dynamics
Marloes Arts
Victor Garcia Satorras
Chin-Wei Huang
Daniel Zuegner
Marco Federici
C. Clementi
Frank Noé
Robert Pinsler
Rianne van den Berg
DiffM
91
91
0
01 Feb 2023
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Machine Learning Coarse-Grained Potentials of Protein Thermodynamics
Maciej Majewski
Adriana Pérez
Philipp Thölke
Stefan Doerr
N. Charron
T. Giorgino
B. Husic
C. Clementi
Frank Noé
Gianni De Fabritiis
AI4CE
68
76
0
14 Dec 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
87
496
0
15 Jun 2022
So3krates: Equivariant attention for interactions on arbitrary
  length-scales in molecular systems
So3krates: Equivariant attention for interactions on arbitrary length-scales in molecular systems
J. Frank
Oliver T. Unke
Klaus-Robert Muller
53
44
0
28 May 2022
Contrastive Learning of Coarse-Grained Force Fields
Contrastive Learning of Coarse-Grained Force Fields
Xinqiang Ding
Bin W. Zhang
61
21
0
22 May 2022
Accurate Machine Learned Quantum-Mechanical Force Fields for
  Biomolecular Simulations
Accurate Machine Learned Quantum-Mechanical Force Fields for Biomolecular Simulations
Oliver T. Unke
M. Stohr
Stefan Ganscha
Thomas Unterthiner
Hartmut Maennel
...
Daniel Ahlin
M. Gastegger
L. M. Sandonas
A. Tkatchenko
Klaus-Robert Muller
AI4CE
68
18
0
17 May 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni De Fabritiis
AI4CE
91
197
0
05 Feb 2022
Machine Learning Implicit Solvation for Molecular Dynamics
Machine Learning Implicit Solvation for Molecular Dynamics
Yaoyi Chen
Andreas Krämer
N. Charron
B. Husic
C. Clementi
Frank Noé
AI4CE
33
59
0
14 Jun 2021
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and
  Nonlocal Effects
SpookyNet: Learning Force Fields with Electronic Degrees of Freedom and Nonlocal Effects
Oliver T. Unke
Stefan Chmiela
M. Gastegger
Kristof T. Schütt
H. E. Sauceda
K. Müller
191
255
0
01 May 2021
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
302
1,309
0
08 Jan 2021
Coarse Graining Molecular Dynamics with Graph Neural Networks
Coarse Graining Molecular Dynamics with Graph Neural Networks
B. Husic
N. Charron
Dominik Lemm
Jiang Wang
Adria Pérez
...
Yaoyi Chen
Simon Olsson
Gianni De Fabritiis
Frank Noé
C. Clementi
AI4CE
98
160
0
22 Jul 2020
Coarse-Graining Auto-Encoders for Molecular Dynamics
Coarse-Graining Auto-Encoders for Molecular Dynamics
Wujie Wang
Rafael Gómez-Bombarelli
AI4CE
53
167
0
06 Dec 2018
Machine Learning of coarse-grained Molecular Dynamics Force Fields
Machine Learning of coarse-grained Molecular Dynamics Force Fields
Jiang Wang
Simon Olsson
C. Wehmeyer
Adria Pérez
Nicholas E. Charron
Gianni De Fabritiis
Frank Noe
C. Clementi
AI4CE
38
405
0
04 Dec 2018
Graph Attention Networks
Graph Attention Networks
Petar Velickovic
Guillem Cucurull
Arantxa Casanova
Adriana Romero
Pietro Lio
Yoshua Bengio
GNN
481
20,233
0
30 Oct 2017
Predictive Coarse-Graining
Predictive Coarse-Graining
M. Schöberl
N. Zabaras
P. Koutsourelakis
138
34
0
26 May 2016
1