Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.17436
Cited By
Uncertainty-weighted Loss Functions for Improved Adversarial Attacks on Semantic Segmentation
26 October 2023
Kira Maag
Asja Fischer
AAML
SSeg
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Uncertainty-weighted Loss Functions for Improved Adversarial Attacks on Semantic Segmentation"
8 / 8 papers shown
Title
Uni-SLAM: Uncertainty-Aware Neural Implicit SLAM for Real-Time Dense Indoor Scene Reconstruction
Shaoxiang Wang
Yaxu Xie
Chun-Peng Chang
Christen Millerdurai
A. Pagani
Didier Stricker
67
1
0
29 Nov 2024
Detecting Adversarial Attacks in Semantic Segmentation via Uncertainty Estimation: A Deep Analysis
Kira Maag
Roman Resner
Asja Fischer
AAML
45
0
0
19 Aug 2024
Reducing Texture Bias of Deep Neural Networks via Edge Enhancing Diffusion
Edgar Heinert
Matthias Rottmann
Kira Maag
Karsten Kahl
17
6
0
14 Feb 2024
Pixel-wise Gradient Uncertainty for Convolutional Neural Networks applied to Out-of-Distribution Segmentation
Kira Maag
Tobias Riedlinger
UQCV
38
7
0
13 Mar 2023
Certified Defences Against Adversarial Patch Attacks on Semantic Segmentation
Maksym Yatsura
K. Sakmann
N. G. Hua
Matthias Hein
J. H. Metzen
AAML
52
17
0
13 Sep 2022
The Vulnerability of Semantic Segmentation Networks to Adversarial Attacks in Autonomous Driving: Enhancing Extensive Environment Sensing
Andreas Bär
Jonas Löhdefink
Nikhil Kapoor
Serin Varghese
Fabian Hüger
Peter Schlicht
Tim Fingscheidt
AAML
108
33
0
11 Jan 2021
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
296
3,112
0
04 Nov 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
285
9,145
0
06 Jun 2015
1