ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.16319
  4. Cited By
DiQAD: A Benchmark Dataset for End-to-End Open-domain Dialogue
  Assessment

DiQAD: A Benchmark Dataset for End-to-End Open-domain Dialogue Assessment

25 October 2023
Yukun Zhao
Lingyong Yan
Weiwei Sun
Chong Meng
Shuaiqiang Wang
Zhicong Cheng
Zhaochun Ren
Dawei Yin
    ELM
ArXivPDFHTML

Papers citing "DiQAD: A Benchmark Dataset for End-to-End Open-domain Dialogue Assessment"

3 / 3 papers shown
Title
Training language models to follow instructions with human feedback
Training language models to follow instructions with human feedback
Long Ouyang
Jeff Wu
Xu Jiang
Diogo Almeida
Carroll L. Wainwright
...
Amanda Askell
Peter Welinder
Paul Christiano
Jan Leike
Ryan J. Lowe
OSLM
ALM
381
12,081
0
04 Mar 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally
  Across Scales and Tasks
P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
Xiao Liu
Kaixuan Ji
Yicheng Fu
Weng Lam Tam
Zhengxiao Du
Zhilin Yang
Jie Tang
VLM
238
814
0
14 Oct 2021
Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese
Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese
ZhuoSheng Zhang
Hanqing Zhang
Keming Chen
Yuhang Guo
Jingyun Hua
Yulong Wang
Ming Zhou
VLM
55
70
0
13 Oct 2021
1