ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.15849
21
3

A Resilient Framework for 5G-Edge-Connected UAVs based on Switching Edge-MPC and Onboard-PID Control

24 October 2023
Gerasimos Damigos
Achilleas Santi Seisa
S. Satpute
Tore Lindgren
G. Nikolakopoulos
ArXivPDFHTML
Abstract

In recent years, the need for resources for handling processes with high computational complexity for mobile robots is becoming increasingly urgent. More specifically, robots need to autonomously operate in a robust and continuous manner, while keeping high performance, a need that led to the utilization of edge computing to offload many computationally demanding and time-critical robotic procedures. However, safe mechanisms should be implemented to handle situations when it is not possible to use the offloaded procedures, such as if the communication is challenged or the edge cluster is not available. To this end, this article presents a switching strategy for safety, redundancy, and optimized behavior through an edge computing-based Model Predictive Controller (MPC) and a low-level onboard-PID controller for edge-connected Unmanned Aerial Vehicles (UAVs). The switching strategy is based on the communication Key Performance Indicators (KPIs) over 5G to decide whether the UAV should be controlled by the edge-based or have a safe fallback based on the onboard controller.

View on arXiv
Comments on this paper