ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.14085
  4. Cited By
Adaptive, Doubly Optimal No-Regret Learning in Strongly Monotone and
  Exp-Concave Games with Gradient Feedback

Adaptive, Doubly Optimal No-Regret Learning in Strongly Monotone and Exp-Concave Games with Gradient Feedback

21 October 2023
Michael I. Jordan
Tianyi Lin
Zhengyuan Zhou
ArXivPDFHTML

Papers citing "Adaptive, Doubly Optimal No-Regret Learning in Strongly Monotone and Exp-Concave Games with Gradient Feedback"

3 / 3 papers shown
Title
Optimal Dynamic Regret in Exp-Concave Online Learning
Optimal Dynamic Regret in Exp-Concave Online Learning
Dheeraj Baby
Yu-Xiang Wang
42
43
0
23 Apr 2021
Stochastic Variance Reduction for Variational Inequality Methods
Stochastic Variance Reduction for Variational Inequality Methods
Ahmet Alacaoglu
Yura Malitsky
58
68
0
16 Feb 2021
Kernel-based methods for bandit convex optimization
Kernel-based methods for bandit convex optimization
Sébastien Bubeck
Ronen Eldan
Y. Lee
78
163
0
11 Jul 2016
1