Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.13349
Cited By
DeepFDR: A Deep Learning-based False Discovery Rate Control Method for Neuroimaging Data
20 October 2023
Taehyo Kim
Hai Shu
Qiran Jia
Mony de Leon
Re-assign community
ArXiv
PDF
HTML
Papers citing
"DeepFDR: A Deep Learning-based False Discovery Rate Control Method for Neuroimaging Data"
6 / 6 papers shown
Title
UNETR: Transformers for 3D Medical Image Segmentation
Ali Hatamizadeh
Yucheng Tang
Vishwesh Nath
Dong Yang
Andriy Myronenko
Bennett Landman
H. Roth
Daguang Xu
ViT
MedIm
156
1,567
0
18 Mar 2021
Unsupervised Learning of Image Segmentation Based on Differentiable Feature Clustering
Wonjik Kim
Asako Kanezaki
Masayuki Tanaka
48
210
0
20 Jul 2020
Multi-Site Infant Brain Segmentation Algorithms: The iSeg-2019 Challenge
Yue Sun
Kun Gao
Zhengwang Wu
Zhihao Lei
Ying Wei
...
Weili Lin
V. Jewells
Gang Li
Dinggang Shen
Liwen Wang
49
71
0
04 Jul 2020
Deep Knockoffs
Yaniv Romano
Matteo Sesia
Emmanuel J. Candès
BDL
56
139
0
16 Nov 2018
Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge
Spyridon Bakas
M. Reyes
Andras Jakab
Stefan Bauer
Markus Rempfler
...
Jayashree Kalpathy-Cramer
Keyvan Farahani
Christos Davatzikos
Koen van Leemput
Bjoern Menze
109
1,623
0
05 Nov 2018
Multiple Testing for Neuroimaging via Hidden Markov Random Field
Hai Shu
B. Nan
R. Koeppe
41
34
0
04 Apr 2014
1