Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.13007
Cited By
A Critical Survey on Fairness Benefits of Explainable AI
15 October 2023
Luca Deck
Jakob Schoeffer
Maria De-Arteaga
Niklas Kühl
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Critical Survey on Fairness Benefits of Explainable AI"
11 / 11 papers shown
Title
SHAP-based Explanations are Sensitive to Feature Representation
Hyunseung Hwang
Andrew Bell
João Fonseca
Venetia Pliatsika
Julia Stoyanovich
Steven Euijong Whang
TDI
FAtt
32
0
0
13 May 2025
Explanations as Bias Detectors: A Critical Study of Local Post-hoc XAI Methods for Fairness Exploration
Vasiliki Papanikou
Danae Pla Karidi
E. Pitoura
Emmanouil Panagiotou
Eirini Ntoutsi
31
0
0
01 May 2025
Implications of the AI Act for Non-Discrimination Law and Algorithmic Fairness
Luca Deck
Jan-Laurin Müller
Conradin Braun
Domenique Zipperling
Niklas Kühl
FaML
35
5
0
29 Mar 2024
Explanations, Fairness, and Appropriate Reliance in Human-AI Decision-Making
Jakob Schoeffer
Maria De-Arteaga
Niklas Kuehl
FaML
45
46
0
23 Sep 2022
Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations
Jessica Dai
Sohini Upadhyay
Ulrich Aivodji
Stephen H. Bach
Himabindu Lakkaraju
40
56
0
15 May 2022
Some Critical and Ethical Perspectives on the Empirical Turn of AI Interpretability
Jean-Marie John-Mathews
42
33
0
20 Sep 2021
Productivity, Portability, Performance: Data-Centric Python
Yiheng Wang
Yao Zhang
Yanzhang Wang
Yan Wan
Jiao Wang
Zhongyuan Wu
Yuhao Yang
Bowen She
54
94
0
01 Jul 2021
What Do We Want From Explainable Artificial Intelligence (XAI)? -- A Stakeholder Perspective on XAI and a Conceptual Model Guiding Interdisciplinary XAI Research
Markus Langer
Daniel Oster
Timo Speith
Holger Hermanns
Lena Kästner
Eva Schmidt
Andreas Sesing
Kevin Baum
XAI
62
416
0
15 Feb 2021
In Pursuit of Interpretable, Fair and Accurate Machine Learning for Criminal Recidivism Prediction
Caroline Linjun Wang
Bin Han
Bhrij Patel
Cynthia Rudin
FaML
HAI
59
84
0
08 May 2020
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,082
0
24 Oct 2016
1