ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.10598
  4. Cited By
Pareto Optimization to Accelerate Multi-Objective Virtual Screening

Pareto Optimization to Accelerate Multi-Objective Virtual Screening

16 October 2023
Jenna C. Fromer
David E. Graff
Connor W. Coley
ArXiv (abs)PDFHTML

Papers citing "Pareto Optimization to Accelerate Multi-Objective Virtual Screening"

9 / 9 papers shown
Title
Discovering Many Diverse Solutions with Bayesian Optimization
Discovering Many Diverse Solutions with Bayesian Optimization
Natalie Maus
Kaiwen Wu
David Eriksson
Jacob R. Gardner
57
25
0
20 Oct 2022
New Paradigms for Exploiting Parallel Experiments in Bayesian
  Optimization
New Paradigms for Exploiting Parallel Experiments in Bayesian Optimization
Leonardo D. González
Victor M. Zavala
64
22
0
03 Oct 2022
Self-focusing virtual screening with active design space pruning
Self-focusing virtual screening with active design space pruning
David E. Graff
Matteo Aldeghi
Joseph A. Morrone
K. E. Jordan
Edward O. Pyzer-Knapp
Connor W. Coley
60
25
0
03 May 2022
DOCKSTRING: easy molecular docking yields better benchmarks for ligand
  design
DOCKSTRING: easy molecular docking yields better benchmarks for ligand design
Miguel García-Ortegón
G. Simm
Austin Tripp
José Miguel Hernández-Lobato
A. Bender
S. Bacallado
86
82
0
29 Oct 2021
Batch Active Learning at Scale
Batch Active Learning at Scale
Gui Citovsky
Giulia DeSalvo
Claudio Gentile
Lazaros Karydas
Anand Rajagopalan
Afshin Rostamizadeh
Sanjiv Kumar
62
154
0
29 Jul 2021
Uncertainty Quantification Using Neural Networks for Molecular Property
  Prediction
Uncertainty Quantification Using Neural Networks for Molecular Property Prediction
Lior Hirschfeld
Kyle Swanson
Kevin Kaichuang Yang
Regina Barzilay
Connor W. Coley
77
191
0
20 May 2020
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian
  Active Learning
BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning
Andreas Kirsch
Joost R. van Amersfoort
Y. Gal
FedML
87
627
0
19 Jun 2019
Analyzing Learned Molecular Representations for Property Prediction
Analyzing Learned Molecular Representations for Property Prediction
Kevin Kaichuang Yang
Kyle Swanson
Wengong Jin
Connor W. Coley
Philipp Eiden
...
Andrew Palmer
Volker Settels
Tommi Jaakkola
K. Jensen
Regina Barzilay
104
1,317
0
02 Apr 2019
Less is more: sampling chemical space with active learning
Less is more: sampling chemical space with active learning
Justin S. Smith
B. Nebgen
Nicholas Lubbers
Olexandr Isayev
A. Roitberg
57
616
0
28 Jan 2018
1