ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.09560
  4. Cited By
You Only Train Once: A Unified Framework for Both Full-Reference and
  No-Reference Image Quality Assessment

You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment

14 October 2023
Yi Ke Yun
Weisi Lin
ArXivPDFHTML

Papers citing "You Only Train Once: A Unified Framework for Both Full-Reference and No-Reference Image Quality Assessment"

13 / 13 papers shown
Title
MANIQA: Multi-dimension Attention Network for No-Reference Image Quality
  Assessment
MANIQA: Multi-dimension Attention Network for No-Reference Image Quality Assessment
Sidi Yang
Tianhe Wu
Shu Shi
Shanshan Lao
S. Gong
Ming Cao
Jiahao Wang
Yujiu Yang
65
319
0
19 Apr 2022
CAT: Cross Attention in Vision Transformer
CAT: Cross Attention in Vision Transformer
Hezheng Lin
Xingyi Cheng
Xiangyu Wu
Fan Yang
Dong Shen
Zhongyuan Wang
Qing Song
Wei Yuan
ViT
56
152
0
10 Jun 2021
Perceptual Image Quality Assessment with Transformers
Perceptual Image Quality Assessment with Transformers
Manri Cheon
Sung-Jun Yoon
Byungyeon Kang
Junwoo Lee
ViT
51
112
0
30 Apr 2021
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image
  Classification
CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification
Chun-Fu Chen
Quanfu Fan
Yikang Shen
ViT
64
1,469
0
27 Mar 2021
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
Ze Liu
Yutong Lin
Yue Cao
Han Hu
Yixuan Wei
Zheng Zhang
Stephen Lin
B. Guo
ViT
389
21,281
0
25 Mar 2021
Transformer for Image Quality Assessment
Transformer for Image Quality Assessment
Junyong You
J. Korhonen
ViT
164
184
0
30 Dec 2020
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual
  Image Restoration
PIPAL: a Large-Scale Image Quality Assessment Dataset for Perceptual Image Restoration
Jinjin Gu
Haoming Cai
Haoyu Chen
Xiaoxing Ye
Jimmy S. J. Ren
Chao Dong
57
194
0
23 Jul 2020
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of
  Picture Quality
From Patches to Pictures (PaQ-2-PiQ): Mapping the Perceptual Space of Picture Quality
Zhenqiang Ying
Haoran Niu
Praful Gupta
D. Mahajan
Deepti Ghadiyaram
A. Bovik
70
305
0
20 Dec 2019
KonIQ-10k: An ecologically valid database for deep learning of blind
  image quality assessment
KonIQ-10k: An ecologically valid database for deep learning of blind image quality assessment
Vlad Hosu
Hanhe Lin
T. Szirányi
Dietmar Saupe
102
564
0
14 Oct 2019
Blind Image Quality Assessment Using A Deep Bilinear Convolutional
  Neural Network
Blind Image Quality Assessment Using A Deep Bilinear Convolutional Neural Network
Weixia Zhang
Kede Ma
Jia Yan
Dexiang Deng
Zhou Wang
76
659
0
05 Jul 2019
PieAPP: Perceptual Image-Error Assessment through Pairwise Preference
PieAPP: Perceptual Image-Error Assessment through Pairwise Preference
Ekta Prashnani
H. Cai
Yasamin Mostofi
P. Sen
SSL
53
275
0
06 Jun 2018
Stacked Cross Attention for Image-Text Matching
Stacked Cross Attention for Image-Text Matching
Kuang-Huei Lee
Xi Chen
G. Hua
Houdong Hu
Xiaodong He
74
1,151
0
21 Mar 2018
Deep Neural Networks for No-Reference and Full-Reference Image Quality
  Assessment
Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment
S. Bosse
Dominique Maniry
K. Müller
Thomas Wiegand
Wojciech Samek
69
994
0
06 Dec 2016
1