ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.08764
  4. Cited By
Calibrating Likelihoods towards Consistency in Summarization Models

Calibrating Likelihoods towards Consistency in Summarization Models

12 October 2023
Polina Zablotskaia
Misha Khalman
Rishabh Joshi
Livio Baldini Soares
Shoshana Jakobovits
Joshua Maynez
Shashi Narayan
ArXivPDFHTML

Papers citing "Calibrating Likelihoods towards Consistency in Summarization Models"

6 / 6 papers shown
Title
SCOPE: A Self-supervised Framework for Improving Faithfulness in Conditional Text Generation
SCOPE: A Self-supervised Framework for Improving Faithfulness in Conditional Text Generation
Song Duong
Florian Le Bronnec
Alexandre Allauzen
Vincent Guigue
Alberto Lumbreras
Laure Soulier
Patrick Gallinari
HILM
50
0
0
20 Feb 2025
Analysis of Plan-based Retrieval for Grounded Text Generation
Analysis of Plan-based Retrieval for Grounded Text Generation
Ameya Godbole
Nicholas Monath
Seungyeon Kim
A. S. Rawat
Andrew McCallum
Manzil Zaheer
RALM
40
2
0
20 Aug 2024
Conditional Generation with a Question-Answering Blueprint
Conditional Generation with a Question-Answering Blueprint
Shashi Narayan
Joshua Maynez
Reinald Kim Amplayo
Kuzman Ganchev
Annie Louis
Fantine Huot
Anders Sandholm
Dipanjan Das
Mirella Lapata
57
47
0
01 Jul 2022
Increasing Faithfulness in Knowledge-Grounded Dialogue with Controllable
  Features
Increasing Faithfulness in Knowledge-Grounded Dialogue with Controllable Features
Hannah Rashkin
David Reitter
Gaurav Singh Tomar
Dipanjan Das
167
101
0
14 Jul 2021
Fine-Tuning Language Models from Human Preferences
Fine-Tuning Language Models from Human Preferences
Daniel M. Ziegler
Nisan Stiennon
Jeff Wu
Tom B. Brown
Alec Radford
Dario Amodei
Paul Christiano
G. Irving
ALM
280
1,595
0
18 Sep 2019
Teaching Machines to Read and Comprehend
Teaching Machines to Read and Comprehend
Karl Moritz Hermann
Tomás Kociský
Edward Grefenstette
L. Espeholt
W. Kay
Mustafa Suleyman
Phil Blunsom
175
3,510
0
10 Jun 2015
1