ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.08143
  4. Cited By
A Deep Learning Framework for Spatiotemporal Ultrasound Localization
  Microscopy

A Deep Learning Framework for Spatiotemporal Ultrasound Localization Microscopy

12 October 2023
Léo Milecki
Jonathan Porée
H. Belgharbi
Chloé Bourquin
R. Damseh
P. Delafontaine-Martel
F. Lesage
Maxime Gasse
Jean Provost
ArXivPDFHTML

Papers citing "A Deep Learning Framework for Spatiotemporal Ultrasound Localization Microscopy"

6 / 6 papers shown
Title
Evaluating Detection Thresholds: The Impact of False Positives and
  Negatives on Super-Resolution Ultrasound Localization Microscopy
Evaluating Detection Thresholds: The Impact of False Positives and Negatives on Super-Resolution Ultrasound Localization Microscopy
Sepideh K. Gharamaleki
B. Helfield
H. Rivaz
28
0
0
11 Nov 2024
Ensemble Learning for Microbubble Localization in Super-Resolution Ultrasound
Ensemble Learning for Microbubble Localization in Super-Resolution Ultrasound
Sepideh K. Gharamaleki
B. Helfield
H. Rivaz
21
0
0
11 Nov 2024
Pruning Sparse Tensor Neural Networks Enables Deep Learning for 3D
  Ultrasound Localization Microscopy
Pruning Sparse Tensor Neural Networks Enables Deep Learning for 3D Ultrasound Localization Microscopy
Brice Rauby
Paul Xing
Jonathan Porée
Maxime Gasse
Jean Provost
22
2
0
14 Feb 2024
RF-ULM: Ultrasound Localization Microscopy Learned from Radio-Frequency
  Wavefronts
RF-ULM: Ultrasound Localization Microscopy Learned from Radio-Frequency Wavefronts
Christopher Hahne
Georges Chabouh
Arthur Chavignon
Olivier Couture
Raphael Sznitman
13
3
0
02 Oct 2023
Transformer-Based Microbubble Localization
Transformer-Based Microbubble Localization
Sepideh K. Gharamaleki
B. Helfield
H. Rivaz
17
6
0
23 Sep 2022
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
204
5,176
0
16 Sep 2016
1