ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.08073
  4. Cited By
Samples on Thin Ice: Re-Evaluating Adversarial Pruning of Neural
  Networks

Samples on Thin Ice: Re-Evaluating Adversarial Pruning of Neural Networks

12 October 2023
Giorgio Piras
Maura Pintor
Ambra Demontis
Battista Biggio
    AAML
ArXivPDFHTML

Papers citing "Samples on Thin Ice: Re-Evaluating Adversarial Pruning of Neural Networks"

3 / 3 papers shown
Title
Pruning has a disparate impact on model accuracy
Pruning has a disparate impact on model accuracy
Cuong Tran
Ferdinando Fioretto
Jung-Eun Kim
Rakshit Naidu
39
38
0
26 May 2022
RobustBench: a standardized adversarial robustness benchmark
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
228
677
0
19 Oct 2020
What is the State of Neural Network Pruning?
What is the State of Neural Network Pruning?
Davis W. Blalock
Jose Javier Gonzalez Ortiz
Jonathan Frankle
John Guttag
191
1,027
0
06 Mar 2020
1