Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.07882
Cited By
The Thousand Faces of Explainable AI Along the Machine Learning Life Cycle: Industrial Reality and Current State of Research
11 October 2023
Thomas Decker
Ralf Gross
Alexander Koebler
Michael Lebacher
Ronald Schnitzer
Stefan H. Weber
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Thousand Faces of Explainable AI Along the Machine Learning Life Cycle: Industrial Reality and Current State of Research"
14 / 14 papers shown
Title
MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model
Alexander Koebler
Ingo Thon
Florian Buettner
37
0
0
26 Mar 2025
Root Causing Prediction Anomalies Using Explainable AI
R. Vishnampet
Rajesh Shenoy
Jianhui Chen
Anuj Gupta
24
0
0
04 Mar 2024
Explanation Shift: Detecting distribution shifts on tabular data via the explanation space
Carlos Mougan
Klaus Broelemann
Gjergji Kasneci
T. Tiropanis
Steffen Staab
FAtt
25
7
0
22 Oct 2022
A Psychological Theory of Explainability
Scott Cheng-Hsin Yang
Tomas Folke
Patrick Shafto
XAI
FAtt
49
16
0
17 May 2022
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
Satyapriya Krishna
Tessa Han
Alex Gu
Steven Wu
S. Jabbari
Himabindu Lakkaraju
177
185
0
03 Feb 2022
Explaining Hyperparameter Optimization via Partial Dependence Plots
Julia Moosbauer
J. Herbinger
Giuseppe Casalicchio
Marius Lindauer
Bernd Bischl
47
56
0
08 Nov 2021
Fast TreeSHAP: Accelerating SHAP Value Computation for Trees
Jilei Yang
FAtt
31
35
0
20 Sep 2021
FastSHAP: Real-Time Shapley Value Estimation
N. Jethani
Mukund Sudarshan
Ian Covert
Su-In Lee
Rajesh Ranganath
TDI
FAtt
67
122
0
15 Jul 2021
Improving Cooperative Game Theory-based Data Valuation via Data Utility Learning
Tianhao Wang
Yu Yang
R. Jia
TDI
34
12
0
13 Jul 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
82
70
0
02 Mar 2021
Estimating Example Difficulty Using Variance of Gradients
Chirag Agarwal
Daniel D'souza
Sara Hooker
208
107
0
26 Aug 2020
Improving fairness in machine learning systems: What do industry practitioners need?
Kenneth Holstein
Jennifer Wortman Vaughan
Hal Daumé
Miroslav Dudík
Hanna M. Wallach
FaML
HAI
192
742
0
13 Dec 2018
Towards A Rigorous Science of Interpretable Machine Learning
Finale Doshi-Velez
Been Kim
XAI
FaML
251
3,683
0
28 Feb 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
1