Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.06923
Cited By
PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification
10 October 2023
Qianli Shen
Wai Hoh Tang
Zhun Deng
Apostolos F. Psaros
Kenji Kawaguchi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"PICProp: Physics-Informed Confidence Propagation for Uncertainty Quantification"
13 / 13 papers shown
Title
The Neural Testbed: Evaluating Joint Predictions
Ian Osband
Zheng Wen
S. Asghari
Vikranth Dwaracherla
Botao Hao
M. Ibrahimi
Dieterich Lawson
Xiuyuan Lu
Brendan O'Donoghue
Benjamin Van Roy
UQCV
47
22
0
09 Oct 2021
Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yihang Gao
Michael K. Ng
50
30
0
30 Aug 2021
Multi-fidelity Bayesian Neural Networks: Algorithms and Applications
Xuhui Meng
H. Babaee
George Karniadakis
51
131
0
19 Dec 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
321
1,914
0
12 Nov 2020
Bilevel Optimization: Convergence Analysis and Enhanced Design
Kaiyi Ji
Junjie Yang
Yingbin Liang
189
258
0
15 Oct 2020
Bayesian Deep Ensembles via the Neural Tangent Kernel
Bobby He
Balaji Lakshminarayanan
Yee Whye Teh
BDL
UQCV
53
120
0
11 Jul 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
231
785
0
13 Mar 2020
Optimizing Millions of Hyperparameters by Implicit Differentiation
Jonathan Lorraine
Paul Vicol
David Duvenaud
DD
106
414
0
06 Nov 2019
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
57
78
0
25 Nov 2018
Adversarial Uncertainty Quantification in Physics-Informed Neural Networks
Yibo Yang
P. Perdikaris
AI4CE
PINN
114
359
0
09 Nov 2018
Physics-Informed Generative Adversarial Networks for Stochastic Differential Equations
Siyu Dai
Shawn Schaffert
Andreas G. Hofmann
113
365
0
05 Nov 2018
Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic problems
Dongkun Zhang
Lu Lu
Ling Guo
George Karniadakis
UQCV
102
408
0
21 Sep 2018
MCMC using Hamiltonian dynamics
Radford M. Neal
290
3,280
0
09 Jun 2012
1