ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.06468
  4. Cited By
A Geometrical Approach to Evaluate the Adversarial Robustness of Deep
  Neural Networks

A Geometrical Approach to Evaluate the Adversarial Robustness of Deep Neural Networks

10 October 2023
Yang Wang
B. Dong
Ke Xu
Haiyin Piao
Yufei Ding
Baocai Yin
Xin Yang
    AAML
ArXivPDFHTML

Papers citing "A Geometrical Approach to Evaluate the Adversarial Robustness of Deep Neural Networks"

5 / 5 papers shown
Title
Rethinking Robustness in Machine Learning: A Posterior Agreement Approach
Rethinking Robustness in Machine Learning: A Posterior Agreement Approach
João B. S. Carvalho
Alessandro Torcinovich
Victor Jimenez Rodriguez
Antonio Emanuele Cinà
Carlos Cotrini
Lea Schönherr
J. M. Buhmann
OOD
68
0
0
20 Mar 2025
Frame-Event Alignment and Fusion Network for High Frame Rate Tracking
Frame-Event Alignment and Fusion Network for High Frame Rate Tracking
Jiqing Zhang
Yuanchen Wang
Wenxi Liu
Meng Li
Jinpeng Bai
Baocai Yin
Xin Yang
37
33
0
25 May 2023
Object Tracking by Jointly Exploiting Frame and Event Domain
Object Tracking by Jointly Exploiting Frame and Event Domain
Jiqing Zhang
Xin Yang
Yingkai Fu
Xiaopeng Wei
Baocai Yin
B. Dong
74
84
0
19 Sep 2021
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
228
1,835
0
03 Feb 2017
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
284
5,835
0
08 Jul 2016
1