Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.06468
Cited By
A Geometrical Approach to Evaluate the Adversarial Robustness of Deep Neural Networks
10 October 2023
Yang Wang
B. Dong
Ke Xu
Haiyin Piao
Yufei Ding
Baocai Yin
Xin Yang
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Geometrical Approach to Evaluate the Adversarial Robustness of Deep Neural Networks"
5 / 5 papers shown
Title
Rethinking Robustness in Machine Learning: A Posterior Agreement Approach
João B. S. Carvalho
Alessandro Torcinovich
Victor Jimenez Rodriguez
Antonio Emanuele Cinà
Carlos Cotrini
Lea Schönherr
J. M. Buhmann
OOD
68
0
0
20 Mar 2025
Frame-Event Alignment and Fusion Network for High Frame Rate Tracking
Jiqing Zhang
Yuanchen Wang
Wenxi Liu
Meng Li
Jinpeng Bai
Baocai Yin
Xin Yang
37
33
0
25 May 2023
Object Tracking by Jointly Exploiting Frame and Event Domain
Jiqing Zhang
Xin Yang
Yingkai Fu
Xiaopeng Wei
Baocai Yin
B. Dong
74
84
0
19 Sep 2021
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
228
1,835
0
03 Feb 2017
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
284
5,835
0
08 Jul 2016
1