Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.04539
Cited By
Generating Less Certain Adversarial Examples Improves Robust Generalization
6 October 2023
Minxing Zhang
Michael Backes
Xiao Zhang
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Generating Less Certain Adversarial Examples Improves Robust Generalization"
49 / 49 papers shown
Title
CTBENCH: A Library and Benchmark for Certified Training
Yuhao Mao
Stefan Balauca
Martin Vechev
OOD
89
5
0
07 Jun 2024
CFA: Class-wise Calibrated Fair Adversarial Training
Zeming Wei
Yifei Wang
Yiwen Guo
Yisen Wang
AAML
80
53
0
25 Mar 2023
Escaping limit cycles: Global convergence for constrained nonconvex-nonconcave minimax problems
Thomas Pethick
P. Latafat
Panagiotis Patrinos
Olivier Fercoq
Volkan Cevher
76
47
0
20 Feb 2023
Better Diffusion Models Further Improve Adversarial Training
Zekai Wang
Tianyu Pang
Chao Du
Min Lin
Weiwei Liu
Shuicheng Yan
DiffM
54
223
0
09 Feb 2023
Exploring and Exploiting Decision Boundary Dynamics for Adversarial Robustness
Yuancheng Xu
Yanchao Sun
Micah Goldblum
Tom Goldstein
Furong Huang
AAML
63
38
0
06 Feb 2023
Understanding Robust Overfitting of Adversarial Training and Beyond
Chaojian Yu
Bo Han
Li Shen
Jun Yu
Chen Gong
Biwei Huang
Tongliang Liu
OOD
69
60
0
17 Jun 2022
Adversarial Unlearning: Reducing Confidence Along Adversarial Directions
Amrith Rajagopal Setlur
Benjamin Eysenbach
Virginia Smith
Sergey Levine
55
18
0
03 Jun 2022
Enhancing Adversarial Training with Second-Order Statistics of Weights
Gao Jin
Xinping Yi
Wei Huang
S. Schewe
Xiaowei Huang
AAML
73
47
0
11 Mar 2022
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
84
66
0
09 Apr 2021
Consistency Regularization for Adversarial Robustness
Jihoon Tack
Sihyun Yu
Jongheon Jeong
Minseon Kim
Sung Ju Hwang
Jinwoo Shin
AAML
68
61
0
08 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
81
272
0
02 Mar 2021
Efficient Methods for Structured Nonconvex-Nonconcave Min-Max Optimization
Jelena Diakonikolas
C. Daskalakis
Michael I. Jordan
70
144
0
31 Oct 2020
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
322
702
0
19 Oct 2020
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
57
11
0
21 Sep 2020
Understanding and Improving Fast Adversarial Training
Maksym Andriushchenko
Nicolas Flammarion
AAML
79
290
0
06 Jul 2020
The limits of min-max optimization algorithms: convergence to spurious non-critical sets
Ya-Ping Hsieh
P. Mertikopoulos
Volkan Cevher
74
83
0
16 Jun 2020
Reevaluating Adversarial Examples in Natural Language
John X. Morris
Eli Lifland
Jack Lanchantin
Yangfeng Ji
Yanjun Qi
SILM
AAML
173
114
0
25 Apr 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
216
1,846
0
03 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
99
801
0
26 Feb 2020
Over-parameterized Adversarial Training: An Analysis Overcoming the Curse of Dimensionality
Yi Zhang
Orestis Plevrakis
S. Du
Xingguo Li
Zhao Song
Sanjeev Arora
108
52
0
16 Feb 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
138
1,178
0
12 Jan 2020
AdvHat: Real-world adversarial attack on ArcFace Face ID system
Stepan Alekseevich Komkov
Aleksandr Petiushko
AAML
CVBM
54
285
0
23 Aug 2019
Convergence of Gradient Methods on Bilinear Zero-Sum Games
Guojun Zhang
Yaoliang Yu
47
37
0
15 Aug 2019
Understanding Adversarial Attacks on Deep Learning Based Medical Image Analysis Systems
Xingjun Ma
Yuhao Niu
Lin Gu
Yisen Wang
Yitian Zhao
James Bailey
Feng Lu
MedIm
AAML
69
451
0
24 Jul 2019
Convergence of Adversarial Training in Overparametrized Neural Networks
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
Jason D. Lee
AAML
96
109
0
19 Jun 2019
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
125
752
0
31 May 2019
Are Labels Required for Improving Adversarial Robustness?
J. Uesato
Jean-Baptiste Alayrac
Po-Sen Huang
Robert Stanforth
Alhussein Fawzi
Pushmeet Kohli
AAML
74
333
0
31 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,838
0
06 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
130
1,247
0
29 Apr 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
150
2,039
0
08 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
134
2,551
0
24 Jan 2019
Feature Denoising for Improving Adversarial Robustness
Cihang Xie
Yuxin Wu
Laurens van der Maaten
Alan Yuille
Kaiming He
107
909
0
09 Dec 2018
Theoretical Analysis of Adversarial Learning: A Minimax Approach
Zhuozhuo Tu
Jingwei Zhang
Dacheng Tao
AAML
45
68
0
13 Nov 2018
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
Jacob Devlin
Ming-Wei Chang
Kenton Lee
Kristina Toutanova
VLM
SSL
SSeg
1.8K
94,891
0
11 Oct 2018
The Limit Points of (Optimistic) Gradient Descent in Min-Max Optimization
C. Daskalakis
Ioannis Panageas
69
256
0
11 Jul 2018
Optimistic mirror descent in saddle-point problems: Going the extra (gradient) mile
P. Mertikopoulos
Bruno Lecouat
Houssam Zenati
Chuan-Sheng Foo
V. Chandrasekhar
Georgios Piliouras
132
295
0
07 Jul 2018
Robustness May Be at Odds with Accuracy
Dimitris Tsipras
Shibani Santurkar
Logan Engstrom
Alexander Turner
Aleksander Madry
AAML
102
1,781
0
30 May 2018
On the Suitability of
L
p
L_p
L
p
-norms for Creating and Preventing Adversarial Examples
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
AAML
125
138
0
27 Feb 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
D. Song
Michael E. Houle
James Bailey
AAML
111
739
0
08 Jan 2018
Spatially Transformed Adversarial Examples
Chaowei Xiao
Jun-Yan Zhu
Yue Liu
Warren He
M. Liu
D. Song
AAML
74
523
0
08 Jan 2018
Geometric robustness of deep networks: analysis and improvement
Can Kanbak
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
OOD
AAML
84
131
0
24 Nov 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
307
12,069
0
19 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,725
0
19 May 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
264
8,552
0
16 Aug 2016
Deep Residual Learning for Image Recognition
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
MedIm
2.2K
194,020
0
10 Dec 2015
Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks
Nicolas Papernot
Patrick McDaniel
Xi Wu
S. Jha
A. Swami
AAML
102
3,072
0
14 Nov 2015
DeepDriving: Learning Affordance for Direct Perception in Autonomous Driving
Chenyi Chen
Ari Seff
A. Kornhauser
Jianxiong Xiao
99
1,765
0
01 May 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
277
19,066
0
20 Dec 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
270
14,927
1
21 Dec 2013
1