ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.03789
  4. Cited By
Grokking as a First Order Phase Transition in Two Layer Networks

Grokking as a First Order Phase Transition in Two Layer Networks

5 October 2023
Noa Rubin
Inbar Seroussi
Z. Ringel
ArXivPDFHTML

Papers citing "Grokking as a First Order Phase Transition in Two Layer Networks"

14 / 14 papers shown
Title
Position: Solve Layerwise Linear Models First to Understand Neural Dynamical Phenomena (Neural Collapse, Emergence, Lazy/Rich Regime, and Grokking)
Position: Solve Layerwise Linear Models First to Understand Neural Dynamical Phenomena (Neural Collapse, Emergence, Lazy/Rich Regime, and Grokking)
Yoonsoo Nam
Seok Hyeong Lee
Clementine Domine
Yea Chan Park
Charles London
Wonyl Choi
Niclas Goring
Seungjai Lee
AI4CE
33
0
0
28 Feb 2025
Grokking at the Edge of Numerical Stability
Grokking at the Edge of Numerical Stability
Lucas Prieto
Melih Barsbey
Pedro A.M. Mediano
Tolga Birdal
34
3
0
08 Jan 2025
Grokking at the Edge of Linear Separability
Grokking at the Edge of Linear Separability
Alon Beck
Noam Levi
Yohai Bar-Sinai
29
0
0
06 Oct 2024
Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition
Why Do You Grok? A Theoretical Analysis of Grokking Modular Addition
Mohamad Amin Mohamadi
Zhiyuan Li
Lei Wu
Danica J. Sutherland
40
10
0
17 Jul 2024
Get rich quick: exact solutions reveal how unbalanced initializations
  promote rapid feature learning
Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning
D. Kunin
Allan Raventós
Clémentine Dominé
Feng Chen
David Klindt
Andrew M. Saxe
Surya Ganguli
MLT
40
15
0
10 Jun 2024
Grokking Modular Polynomials
Grokking Modular Polynomials
Darshil Doshi
Tianyu He
Aritra Das
Andrey Gromov
40
4
0
05 Jun 2024
Phase Transitions in the Output Distribution of Large Language Models
Phase Transitions in the Output Distribution of Large Language Models
Julian Arnold
Flemming Holtorf
Frank Schafer
Niels Lörch
39
1
0
27 May 2024
Bridging Lottery Ticket and Grokking: Understanding Grokking from Inner Structure of Networks
Bridging Lottery Ticket and Grokking: Understanding Grokking from Inner Structure of Networks
Gouki Minegishi
Yusuke Iwasawa
Yutaka Matsuo
11
3
0
30 Oct 2023
Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural
  Networks
Spectral-Bias and Kernel-Task Alignment in Physically Informed Neural Networks
Inbar Seroussi
Asaf Miron
Z. Ringel
PINN
32
0
0
12 Jul 2023
Learning Single-Index Models with Shallow Neural Networks
Learning Single-Index Models with Shallow Neural Networks
A. Bietti
Joan Bruna
Clayton Sanford
M. Song
162
67
0
27 Oct 2022
Grokking phase transitions in learning local rules with gradient descent
Grokking phase transitions in learning local rules with gradient descent
Bojan Žunkovič
E. Ilievski
60
16
0
26 Oct 2022
Omnigrok: Grokking Beyond Algorithmic Data
Omnigrok: Grokking Beyond Algorithmic Data
Ziming Liu
Eric J. Michaud
Max Tegmark
56
76
0
03 Oct 2022
Neural Networks Efficiently Learn Low-Dimensional Representations with
  SGD
Neural Networks Efficiently Learn Low-Dimensional Representations with SGD
Alireza Mousavi-Hosseini
Sejun Park
M. Girotti
Ioannis Mitliagkas
Murat A. Erdogdu
MLT
319
48
0
29 Sep 2022
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
179
3,262
0
09 Jun 2012
1