Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.03150
Cited By
Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly
4 October 2023
Herbert Woisetschläger
Alexander Erben
Shiqiang Wang
R. Mayer
Hans-Arno Jacobsen
FedML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Fine-Tuning of LLMs on the Very Edge: The Good, the Bad, the Ugly"
6 / 6 papers shown
Title
Communication-Efficient Federated Fine-Tuning of Language Models via Dynamic Update Schedules
Michail Theologitis
V. Samoladas
Antonios Deligiannakis
29
0
0
07 May 2025
Mobile Edge Intelligence for Large Language Models: A Contemporary Survey
Guanqiao Qu
Qiyuan Chen
Wei Wei
Zheng Lin
Xianhao Chen
Kaibin Huang
42
43
0
09 Jul 2024
Snake Learning: A Communication- and Computation-Efficient Distributed Learning Framework for 6G
Xiaoxue Yu
Xingfu Yi
Rongpeng Li
Fei Wang
Chenghui Peng
Zhifeng Zhao
Honggang Zhang
64
1
0
06 May 2024
Federated Full-Parameter Tuning of Billion-Sized Language Models with Communication Cost under 18 Kilobytes
Zhen Qin
Daoyuan Chen
Bingchen Qian
Bolin Ding
Yaliang Li
Shuiguang Deng
FedML
32
32
0
11 Dec 2023
ZeRO-Offload: Democratizing Billion-Scale Model Training
Jie Ren
Samyam Rajbhandari
Reza Yazdani Aminabadi
Olatunji Ruwase
Shuangyang Yang
Minjia Zhang
Dong Li
Yuxiong He
MoE
168
414
0
18 Jan 2021
FedML: A Research Library and Benchmark for Federated Machine Learning
Chaoyang He
Songze Li
Jinhyun So
Xiao Zeng
Mi Zhang
...
Yang Liu
Ramesh Raskar
Qiang Yang
M. Annavaram
Salman Avestimehr
FedML
168
564
0
27 Jul 2020
1