Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2310.02286
Cited By
A Comparison of Mesh-Free Differentiable Programming and Data-Driven Strategies for Optimal Control under PDE Constraints
2 October 2023
Roussel Desmond Nzoyem
David A.W. Barton
Tom Deakin
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"A Comparison of Mesh-Free Differentiable Programming and Data-Driven Strategies for Optimal Control under PDE Constraints"
6 / 6 papers shown
Title
JAX-FLUIDS: A fully-differentiable high-order computational fluid dynamics solver for compressible two-phase flows
Deniz A. Bezgin
Aaron B. Buhendwa
Nikolaus A. Adams
AI4CE
65
71
0
25 Mar 2022
Learning to Control PDEs with Differentiable Physics
Philipp Holl
V. Koltun
Nils Thuerey
AI4CE
PINN
79
189
0
21 Jan 2020
JAX, M.D.: A Framework for Differentiable Physics
S. Schoenholz
E. D. Cubuk
50
38
0
09 Dec 2019
Hidden Fluid Mechanics: A Navier-Stokes Informed Deep Learning Framework for Assimilating Flow Visualization Data
M. Raissi
A. Yazdani
George Karniadakis
AI4CE
PINN
93
161
0
13 Aug 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
883
9,364
0
06 Jun 2015
Automatic differentiation in machine learning: a survey
A. G. Baydin
Barak A. Pearlmutter
Alexey Radul
J. Siskind
PINN
AI4CE
ODL
174
2,820
0
20 Feb 2015
1