ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2310.01109
  4. Cited By
R-divergence for Estimating Model-oriented Distribution Discrepancy

R-divergence for Estimating Model-oriented Distribution Discrepancy

2 October 2023
Zhilin Zhao
Longbing Cao
ArXiv (abs)PDFHTML

Papers citing "R-divergence for Estimating Model-oriented Distribution Discrepancy"

17 / 17 papers shown
Title
A ConvNet for the 2020s
A ConvNet for the 2020s
Zhuang Liu
Hanzi Mao
Chaozheng Wu
Christoph Feichtenhofer
Trevor Darrell
Saining Xie
ViT
189
5,226
0
10 Jan 2022
Regressive Domain Adaptation for Unsupervised Keypoint Detection
Regressive Domain Adaptation for Unsupervised Keypoint Detection
Junguang Jiang
Yifei Ji
Ximei Wang
Yufeng Liu
Jianmin Wang
Mingsheng Long
67
69
0
10 Mar 2021
Two-sample Testing Using Deep Learning
Two-sample Testing Using Deep Learning
Matthias Kirchler
S. Khorasani
Marius Kloft
C. Lippert
72
38
0
14 Oct 2019
Invariant Risk Minimization
Invariant Risk Minimization
Martín Arjovsky
Léon Bottou
Ishaan Gulrajani
David Lopez-Paz
OOD
198
2,246
0
05 Jul 2019
Are Anchor Points Really Indispensable in Label-Noise Learning?
Are Anchor Points Really Indispensable in Label-Noise Learning?
Xiaobo Xia
Tongliang Liu
N. Wang
Bo Han
Chen Gong
Gang Niu
Masashi Sugiyama
NoLa
73
382
0
01 Jun 2019
Learning Robust Global Representations by Penalizing Local Predictive
  Power
Learning Robust Global Representations by Penalizing Local Predictive Power
Haohan Wang
Songwei Ge
Eric Xing
Zachary Chase Lipton
OOD
122
967
0
29 May 2019
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks
  on Corrupted Labels
MentorNet: Learning Data-Driven Curriculum for Very Deep Neural Networks on Corrupted Labels
Lu Jiang
Zhengyuan Zhou
Thomas Leung
Li Li
Li Fei-Fei
NoLa
131
1,456
0
14 Dec 2017
mixup: Beyond Empirical Risk Minimization
mixup: Beyond Empirical Risk Minimization
Hongyi Zhang
Moustapha Cissé
Yann N. Dauphin
David Lopez-Paz
NoLa
316
9,811
0
25 Oct 2017
Deeper, Broader and Artier Domain Generalization
Deeper, Broader and Artier Domain Generalization
Da Li
Yongxin Yang
Yi-Zhe Song
Timothy M. Hospedales
OOD
127
1,453
0
09 Oct 2017
Squeeze-and-Excitation Networks
Squeeze-and-Excitation Networks
Jie Hu
Li Shen
Samuel Albanie
Gang Sun
Enhua Wu
427
26,568
0
05 Sep 2017
Regularizing Neural Networks by Penalizing Confident Output
  Distributions
Regularizing Neural Networks by Penalizing Confident Output Distributions
Gabriel Pereyra
George Tucker
J. Chorowski
Lukasz Kaiser
Geoffrey E. Hinton
NoLa
165
1,141
0
23 Jan 2017
Revisiting Classifier Two-Sample Tests
Revisiting Classifier Two-Sample Tests
David Lopez-Paz
Maxime Oquab
189
406
0
20 Oct 2016
A Baseline for Detecting Misclassified and Out-of-Distribution Examples
  in Neural Networks
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
176
3,480
0
07 Oct 2016
Fast Two-Sample Testing with Analytic Representations of Probability
  Measures
Fast Two-Sample Testing with Analytic Representations of Probability Measures
Kacper P. Chwialkowski
Aaditya Ramdas
Dino Sejdinovic
Arthur Gretton
76
155
0
15 Jun 2015
Learning with Symmetric Label Noise: The Importance of Being Unhinged
Learning with Symmetric Label Noise: The Importance of Being Unhinged
Brendan van Rooyen
A. Menon
Robert C. Williamson
NoLa
172
313
0
28 May 2015
One weird trick for parallelizing convolutional neural networks
One weird trick for parallelizing convolutional neural networks
A. Krizhevsky
GNN
95
1,303
0
23 Apr 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
458
16,922
0
20 Dec 2013
1