Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.16928
Cited By
Learning to Receive Help: Intervention-Aware Concept Embedding Models
29 September 2023
M. Zarlenga
Katherine M. Collins
Krishnamurthy Dvijotham
Adrian Weller
Z. Shams
M. Jamnik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning to Receive Help: Intervention-Aware Concept Embedding Models"
20 / 20 papers shown
Title
If Concept Bottlenecks are the Question, are Foundation Models the Answer?
Nicola Debole
Pietro Barbiero
Francesco Giannini
Andrea Passerini
Stefano Teso
Emanuele Marconato
442
1
0
28 Apr 2025
Leakage and Interpretability in Concept-Based Models
Enrico Parisini
Tapabrata Chakraborti
Chris Harbron
Ben D. MacArthur
Christopher R. S. Banerji
86
1
0
18 Apr 2025
Shortcuts and Identifiability in Concept-based Models from a Neuro-Symbolic Lens
Samuele Bortolotti
Emanuele Marconato
Paolo Morettin
Andrea Passerini
Stefano Teso
147
5
0
16 Feb 2025
Label-Free Concept Bottleneck Models
Tuomas P. Oikarinen
Subhro Das
Lam M. Nguyen
Tsui-Wei Weng
83
175
0
12 Apr 2023
Interactive Concept Bottleneck Models
Kushal Chauhan
Rishabh Tiwari
Jan Freyberg
Pradeep Shenoy
Krishnamurthy Dvijotham
51
55
0
14 Dec 2022
Encoding Concepts in Graph Neural Networks
Lucie Charlotte Magister
Pietro Barbiero
Dmitry Kazhdan
F. Siciliano
Gabriele Ciravegna
Fabrizio Silvestri
M. Jamnik
Pietro Lio
66
21
0
27 Jul 2022
GlanceNets: Interpretabile, Leak-proof Concept-based Models
Emanuele Marconato
Andrea Passerini
Stefano Teso
159
68
0
31 May 2022
Promises and Pitfalls of Black-Box Concept Learning Models
Anita Mahinpei
Justin Clark
Isaac Lage
Finale Doshi-Velez
Weiwei Pan
81
96
0
24 Jun 2021
Now You See Me (CME): Concept-based Model Extraction
Dmitry Kazhdan
B. Dimanov
M. Jamnik
Pietro Lio
Adrian Weller
46
75
0
25 Oct 2020
Concept Bottleneck Models
Pang Wei Koh
Thao Nguyen
Y. S. Tang
Stephen Mussmann
Emma Pierson
Been Kim
Percy Liang
94
821
0
09 Jul 2020
Generative causal explanations of black-box classifiers
Matthew R. O’Shaughnessy
Gregory H. Canal
Marissa Connor
Mark A. Davenport
Christopher Rozell
CML
58
73
0
24 Jun 2020
Concept Whitening for Interpretable Image Recognition
Zhi Chen
Yijie Bei
Cynthia Rudin
FAtt
70
320
0
05 Feb 2020
On Completeness-aware Concept-Based Explanations in Deep Neural Networks
Chih-Kuan Yeh
Been Kim
Sercan O. Arik
Chun-Liang Li
Tomas Pfister
Pradeep Ravikumar
FAtt
228
305
0
17 Oct 2019
Explaining Classifiers with Causal Concept Effect (CaCE)
Yash Goyal
Amir Feder
Uri Shalit
Been Kim
CML
73
177
0
16 Jul 2019
Towards Robust Interpretability with Self-Explaining Neural Networks
David Alvarez-Melis
Tommi Jaakkola
MILM
XAI
126
941
0
20 Jun 2018
Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks
Ruth C. Fong
Andrea Vedaldi
FAtt
68
264
0
10 Jan 2018
Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV)
Been Kim
Martin Wattenberg
Justin Gilmer
Carrie J. Cai
James Wexler
F. Viégas
Rory Sayres
FAtt
211
1,842
0
30 Nov 2017
Categorical Reparameterization with Gumbel-Softmax
Eric Jang
S. Gu
Ben Poole
BDL
317
5,364
0
03 Nov 2016
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
433
18,350
0
27 May 2016
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Sergey Ioffe
Christian Szegedy
OOD
463
43,289
0
11 Feb 2015
1