Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.16729
Cited By
SimPINNs: Simulation-Driven Physics-Informed Neural Networks for Enhanced Performance in Nonlinear Inverse Problems
27 September 2023
C. Bolchini
Luca Cassano
M. Fadili
PINN
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SimPINNs: Simulation-Driven Physics-Informed Neural Networks for Enhanced Performance in Nonlinear Inverse Problems"
7 / 7 papers shown
Title
Equivariant Imaging: Learning Beyond the Range Space
Dongdong Chen
Julián Tachella
Mike E. Davies
SSL
74
102
0
26 Mar 2021
Deep S
3
^3
3
PR: Simultaneous Source Separation and Phase Retrieval Using Deep Generative Models
Christopher A. Metzler
Gordon Wetzstein
38
11
0
14 Feb 2020
prDeep: Robust Phase Retrieval with a Flexible Deep Network
Christopher A. Metzler
Philip Schniter
Ashok Veeraraghavan
Richard G. Baraniuk
OOD
69
169
0
01 Mar 2018
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
M. Raissi
PINN
AI4CE
108
752
0
20 Jan 2018
Deep Image Prior
Dmitry Ulyanov
Andrea Vedaldi
Victor Lempitsky
SupR
114
3,147
0
29 Nov 2017
Phase recovery and holographic image reconstruction using deep learning in neural networks
Y. Rivenson
Yibo Zhang
H. Gunaydin
Da Teng
Aydogan Ozcan
43
820
0
10 May 2017
Compressed Sensing using Generative Models
Ashish Bora
A. Jalal
Eric Price
A. Dimakis
124
808
0
09 Mar 2017
1