ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13591
  4. Cited By
Robust Distributed Learning: Tight Error Bounds and Breakdown Point
  under Data Heterogeneity

Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity

24 September 2023
Youssef Allouah
R. Guerraoui
Nirupam Gupta
Rafael Pinot
Geovani Rizk
    OOD
ArXivPDFHTML

Papers citing "Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity"

16 / 16 papers shown
Title
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Trial and Trust: Addressing Byzantine Attacks with Comprehensive Defense Strategy
Gleb Molodtsov
Daniil Medyakov
Sergey Skorik
Nikolas Khachaturov
Shahane Tigranyan
Vladimir Aletov
A. Avetisyan
Martin Takáč
Aleksandr Beznosikov
AAML
35
0
0
12 May 2025
GRANITE : a Byzantine-Resilient Dynamic Gossip Learning Framework
GRANITE : a Byzantine-Resilient Dynamic Gossip Learning Framework
Yacine Belal
Mohamed Maouche
Sonia Ben Mokhtar
Anthony Simonet-Boulogne
39
0
0
24 Apr 2025
Detecting Backdoor Attacks in Federated Learning via Direction Alignment Inspection
Detecting Backdoor Attacks in Federated Learning via Direction Alignment Inspection
Jiahao Xu
Zikai Zhang
Rui Hu
AAML
FedML
Presented at ResearchTrend Connect | FedML on 28 Mar 2025
152
0
0
11 Mar 2025
FedCLEAN: byzantine defense by CLustering Errors of Activation maps in Non-IID federated learning environments
FedCLEAN: byzantine defense by CLustering Errors of Activation maps in Non-IID federated learning environments
Mehdi Ben Ghali
Reda Bellafqira
Gouenou Coatrieux
AAML
FedML
48
0
0
21 Jan 2025
Unified Breakdown Analysis for Byzantine Robust Gossip
Unified Breakdown Analysis for Byzantine Robust Gossip
Renaud Gaucher
Aymeric Dieuleveut
Hadrien Hendrikx
FedML
AAML
27
1
0
14 Oct 2024
Fine-Tuning Personalization in Federated Learning to Mitigate
  Adversarial Clients
Fine-Tuning Personalization in Federated Learning to Mitigate Adversarial Clients
Youssef Allouah
Abdellah El Mrini
R. Guerraoui
Nirupam Gupta
Rafael Pinot
FedML
32
0
0
30 Sep 2024
The poison of dimensionality
The poison of dimensionality
Lê-Nguyên Hoang
33
2
0
25 Sep 2024
Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive
  Sparsified Model Aggregation
Achieving Byzantine-Resilient Federated Learning via Layer-Adaptive Sparsified Model Aggregation
Jiahao Xu
Zikai Zhang
Rui Hu
44
4
0
02 Sep 2024
A survey on secure decentralized optimization and learning
A survey on secure decentralized optimization and learning
Changxin Liu
Nicola Bastianello
Wei Huo
Yang Shi
Karl H. Johansson
48
1
0
16 Aug 2024
BFTBrain: Adaptive BFT Consensus with Reinforcement Learning
BFTBrain: Adaptive BFT Consensus with Reinforcement Learning
Chenyuan Wu
Haoyun Qin
Mohammad Javad Amiri
B. T. Loo
Dahlia Malkhi
Ryan Marcus
26
0
0
12 Aug 2024
LiD-FL: Towards List-Decodable Federated Learning
LiD-FL: Towards List-Decodable Federated Learning
Hong Liu
Liren Shan
Han Bao
Ronghui You
Yuhao Yi
Jiancheng Lv
FedML
44
0
0
09 Aug 2024
Robustness, Efficiency, or Privacy: Pick Two in Machine Learning
Robustness, Efficiency, or Privacy: Pick Two in Machine Learning
Youssef Allouah
R. Guerraoui
John Stephan
OOD
26
2
0
22 Dec 2023
Byzantine Machine Learning Made Easy by Resilient Averaging of Momentums
Byzantine Machine Learning Made Easy by Resilient Averaging of Momentums
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
Rafael Pinot
John Stephan
FedML
31
67
0
24 May 2022
Linear Convergence in Federated Learning: Tackling Client Heterogeneity
  and Sparse Gradients
Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients
A. Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
FedML
55
157
0
14 Feb 2021
Approximate Byzantine Fault-Tolerance in Distributed Optimization
Approximate Byzantine Fault-Tolerance in Distributed Optimization
Shuo Liu
Nirupam Gupta
Nitin H. Vaidya
28
42
0
22 Jan 2021
Linear Convergence of Gradient and Proximal-Gradient Methods Under the
  Polyak-Łojasiewicz Condition
Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition
Hamed Karimi
J. Nutini
Mark W. Schmidt
139
1,201
0
16 Aug 2016
1