ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.13211
  4. Cited By
Interpretable structural model error discovery from sparse assimilation
  increments using spectral bias-reduced neural networks: A quasi-geostrophic
  turbulence test case

Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case

22 September 2023
R. Mojgani
Ashesh Chattopadhyay
Pedram Hassanzadeh
ArXivPDFHTML

Papers citing "Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case"

10 / 10 papers shown
Title
Learning Closed-form Equations for Subgrid-scale Closures from
  High-fidelity Data: Promises and Challenges
Learning Closed-form Equations for Subgrid-scale Closures from High-fidelity Data: Promises and Challenges
Karan Jakhar
Yifei Guan
R. Mojgani
Ashesh Chattopadhyay
Pedram Hassanzadeh
AI4Cl
AI4CE
50
15
0
08 Jun 2023
Physics-Informed CNNs for Super-Resolution of Sparse Observations on
  Dynamical Systems
Physics-Informed CNNs for Super-Resolution of Sparse Observations on Dynamical Systems
Daniel Kelshaw
Georgios Rigas
Luca Magri
AI4CE
42
17
0
31 Oct 2022
Deep learning-enhanced ensemble-based data assimilation for
  high-dimensional nonlinear dynamical systems
Deep learning-enhanced ensemble-based data assimilation for high-dimensional nonlinear dynamical systems
Ashesh Chattopadhyay
Ebrahim Nabizadeh
Eviatar Bach
Pedram Hassanzadeh
AI4CE
48
20
0
09 Jun 2022
Discovery of interpretable structural model errors by combining Bayesian
  sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test
  case
Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case
R. Mojgani
Ashesh Chattopadhyay
Pedram Hassanzadeh
60
16
0
01 Oct 2021
Global field reconstruction from sparse sensors with Voronoi
  tessellation-assisted deep learning
Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning
Kai Fukami
R. Maulik
Nesar Ramachandra
K. Fukagata
Kunihiko Taira
75
146
0
03 Jan 2021
Calibration and Uncertainty Quantification of Convective Parameters in
  an Idealized GCM
Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM
Oliver R. A. Dunbar
A. Garbuno-Iñigo
T. Schneider
Andrew M. Stuart
49
59
0
24 Dec 2020
Using machine learning to correct model error in data assimilation and
  forecast applications
Using machine learning to correct model error in data assimilation and forecast applications
A. Farchi
P. Laloyaux
Massimo Bonavita
Marc Bocquet
AI4CE
48
105
0
23 Oct 2020
Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics
  and Extract Noise Probability Distributions from Data
Automatic Differentiation to Simultaneously Identify Nonlinear Dynamics and Extract Noise Probability Distributions from Data
Kadierdan Kaheman
Steven L. Brunton
J. Nathan Kutz
29
83
0
12 Sep 2020
Physics-informed learning of governing equations from scarce data
Physics-informed learning of governing equations from scarce data
Zhao Chen
Yang Liu
Hao Sun
PINN
AI4CE
27
385
0
05 May 2020
On the Spectral Bias of Neural Networks
On the Spectral Bias of Neural Networks
Nasim Rahaman
A. Baratin
Devansh Arpit
Felix Dräxler
Min Lin
Fred Hamprecht
Yoshua Bengio
Aaron Courville
94
1,408
0
22 Jun 2018
1