ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.12700
  4. Cited By
mixed attention auto encoder for multi-class industrial anomaly
  detection

mixed attention auto encoder for multi-class industrial anomaly detection

22 September 2023
Jiangqi Liu
Feng Wang
ArXiv (abs)PDFHTML

Papers citing "mixed attention auto encoder for multi-class industrial anomaly detection"

14 / 14 papers shown
Title
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection
Dinomaly: The Less Is More Philosophy in Multi-Class Unsupervised Anomaly Detection
Jia Guo
Shuai Lu
Weihang Zhang
Huiqi Li
Huiqi Li
Hongen Liao
ViT
137
13
0
23 May 2024
Two-stream Decoder Feature Normality Estimating Network for Industrial
  Anomaly Detection
Two-stream Decoder Feature Normality Estimating Network for Industrial Anomaly Detection
Chaewon Park
Minhyeok Lee
Suhwan Cho
Donghyeon Kim
Sangyoun Lee
114
4
0
20 Feb 2023
Prototypical Residual Networks for Anomaly Detection and Localization
Prototypical Residual Networks for Anomaly Detection and Localization
H. Zhang
Zuxuan Wu
Ziyi Wang
Zhineng Chen
Yuwei Jiang
UQCVAI4TS
110
67
0
05 Dec 2022
A Unified Model for Multi-class Anomaly Detection
A Unified Model for Multi-class Anomaly Detection
Zhiyuan You
Lei Cui
Yujun Shen
Kai Yang
Xin Lu
Yu Zheng
Xinyi Le
74
227
0
08 Jun 2022
Omni-frequency Channel-selection Representations for Unsupervised
  Anomaly Detection
Omni-frequency Channel-selection Representations for Unsupervised Anomaly Detection
Yufei Liang
Jiangning Zhang
Shiwei Zhao
Ru-Chwen Wu
Yong-Jin Liu
Shuwen Pan
192
125
0
01 Mar 2022
DRAEM -- A discriminatively trained reconstruction embedding for surface
  anomaly detection
DRAEM -- A discriminatively trained reconstruction embedding for surface anomaly detection
Vitjan Zavrtanik
Matej Kristan
D. Skočaj
88
624
0
17 Aug 2021
CutPaste: Self-Supervised Learning for Anomaly Detection and
  Localization
CutPaste: Self-Supervised Learning for Anomaly Detection and Localization
Chun-Liang Li
Kihyuk Sohn
Jinsung Yoon
Tomas Pfister
SSLUQCV
95
784
0
08 Apr 2021
Multiresolution Knowledge Distillation for Anomaly Detection
Multiresolution Knowledge Distillation for Anomaly Detection
Mohammadreza Salehi
Niousha Sadjadi
Soroosh Baselizadeh
M. Rohban
Hamid R. Rabiee
132
444
0
22 Nov 2020
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and
  Localization
PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization
Thomas Defard
Aleksandr Setkov
Angélique Loesch
Romaric Audigier
UQCV
83
848
0
17 Nov 2020
Explainable Deep One-Class Classification
Explainable Deep One-Class Classification
Philipp Liznerski
Lukas Ruff
Robert A. Vandermeulen
Billy Joe Franks
Marius Kloft
Klaus-Robert Muller
69
199
0
03 Jul 2020
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
Mingxing Tan
Quoc V. Le
3DVMedIm
172
18,224
0
28 May 2019
Deep Anomaly Detection with Outlier Exposure
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
185
1,487
0
11 Dec 2018
Attention Is All You Need
Attention Is All You Need
Ashish Vaswani
Noam M. Shazeer
Niki Parmar
Jakob Uszkoreit
Llion Jones
Aidan Gomez
Lukasz Kaiser
Illia Polosukhin
3DV
808
132,725
0
12 Jun 2017
U-Net: Convolutional Networks for Biomedical Image Segmentation
U-Net: Convolutional Networks for Biomedical Image Segmentation
Olaf Ronneberger
Philipp Fischer
Thomas Brox
SSeg3DV
1.9K
77,520
0
18 May 2015
1