Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.12593
Cited By
Improving Machine Learning Robustness via Adversarial Training
22 September 2023
Long Dang
T. Hapuarachchi
Kaiqi Xiong
Jing Lin
OOD
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Improving Machine Learning Robustness via Adversarial Training"
18 / 18 papers shown
Title
ML Attack Models: Adversarial Attacks and Data Poisoning Attacks
Jing Lin
Long Dang
Mohamed Rahouti
Kaiqi Xiong
AAML
60
48
0
06 Dec 2021
Adversarial training in communication constrained federated learning
Devansh Shah
Parijat Dube
Supriyo Chakraborty
Ashish Verma
FedML
79
34
0
01 Mar 2021
FAT: Federated Adversarial Training
Giulio Zizzo
Ambrish Rawat
M. Sinn
Beat Buesser
FedML
56
43
0
03 Dec 2020
An Adversarial Attack Defending System for Securing In-Vehicle Networks
Yi Li
Jing Lin
Kaiqi Xiong
AAML
80
16
0
25 Aug 2020
Overcoming Forgetting in Federated Learning on Non-IID Data
N. Shoham
Tomer Avidor
Aviv Keren
Nadav Tal-Israel
Daniel Benditkis
Liron Mor Yosef
Itai Zeitak
CLL
FedML
130
226
0
17 Oct 2019
When Does Label Smoothing Help?
Rafael Müller
Simon Kornblith
Geoffrey E. Hinton
UQCV
207
1,955
0
06 Jun 2019
Federated Machine Learning: Concept and Applications
Qiang Yang
Yang Liu
Tianjian Chen
Yongxin Tong
FedML
81
2,332
0
13 Feb 2019
Adversarial Robustness Toolbox v1.0.0
Maria-Irina Nicolae
M. Sinn
Minh-Ngoc Tran
Beat Buesser
Ambrish Rawat
...
Nathalie Baracaldo
Bryant Chen
Heiko Ludwig
Ian Molloy
Ben Edwards
AAML
VLM
77
460
0
03 Jul 2018
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
285
8,926
0
25 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
317
12,138
0
19 Jun 2017
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
282
8,587
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
547
5,912
0
08 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
408
17,615
0
17 Feb 2016
Rethinking the Inception Architecture for Computer Vision
Christian Szegedy
Vincent Vanhoucke
Sergey Ioffe
Jonathon Shlens
Z. Wojna
3DV
BDL
886
27,427
0
02 Dec 2015
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
154
4,905
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
282
19,129
0
20 Dec 2014
ImageNet Large Scale Visual Recognition Challenge
Olga Russakovsky
Jia Deng
Hao Su
J. Krause
S. Satheesh
...
A. Karpathy
A. Khosla
Michael S. Bernstein
Alexander C. Berg
Li Fei-Fei
VLM
ObjD
1.7K
39,615
0
01 Sep 2014
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
284
14,968
1
21 Dec 2013
1