Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.11647
Cited By
Potential and limitations of random Fourier features for dequantizing quantum machine learning
20 September 2023
R. Sweke
Erik Recio
Sofiene Jerbi
Elies Gil-Fuster
Bryce Fuller
Jens Eisert
Johannes Jakob Meyer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Potential and limitations of random Fourier features for dequantizing quantum machine learning"
7 / 7 papers shown
Title
Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits
Yuxuan Du
Min-hsiu Hsieh
Dacheng Tao
39
2
0
22 Aug 2024
On the relation between trainability and dequantization of variational quantum learning models
Elies Gil-Fuster
Casper Gyurik
Adrián Pérez-Salinas
Vedran Dunjko
34
10
0
11 Jun 2024
Prospects of Privacy Advantage in Quantum Machine Learning
Jamie Heredge
Niraj Kumar
Dylan Herman
Shouvanik Chakrabarti
Romina Yalovetzky
Shree Hari Sureshbabu
Changhao Li
Marco Pistoia
31
4
0
14 May 2024
A Comparative Analysis of Adversarial Robustness for Quantum and Classical Machine Learning Models
Maximilian Wendlinger
Kilian Tscharke
Pascal Debus
AAML
18
8
0
24 Apr 2024
On fundamental aspects of quantum extreme learning machines
Weijie Xiong
Giorgio Facelli
Mehrad Sahebi
Owen Agnel
Thiparat Chotibut
Supanut Thanasilp
Zoë Holmes
24
23
0
23 Dec 2023
Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing
M. Cerezo
Martín Larocca
Diego García-Martín
N. L. Diaz
Paolo Braccia
...
Pablo Bermejo
Aroosa Ijaz
Supanut Thanasilp
Eric R. Anschuetz
Zoë Holmes
43
128
0
14 Dec 2023
On the expressivity of embedding quantum kernels
Elies Gil-Fuster
Jens Eisert
Vedran Dunjko
32
16
0
25 Sep 2023
1