ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.10302
  4. Cited By
Decoupled Training: Return of Frustratingly Easy Multi-Domain Learning

Decoupled Training: Return of Frustratingly Easy Multi-Domain Learning

19 September 2023
Ximei Wang
Junwei Pan
Xingzhuo Guo
Dapeng Liu
Jie Jiang
    OOD
ArXivPDFHTML

Papers citing "Decoupled Training: Return of Frustratingly Easy Multi-Domain Learning"

3 / 3 papers shown
Title
Scenario-aware and Mutual-based approach for Multi-scenario
  Recommendation in E-Commerce
Scenario-aware and Mutual-based approach for Multi-scenario Recommendation in E-Commerce
Yuting Chen
Yanshi Wang
Yabo Ni
Anxiang Zeng
Lanfen Lin
52
24
0
16 Dec 2020
Densely Connected Convolutional Networks
Densely Connected Convolutional Networks
Gao Huang
Zhuang Liu
L. V. D. van der Maaten
Kilian Q. Weinberger
PINN
3DV
291
36,371
0
25 Aug 2016
Domain-Adversarial Training of Neural Networks
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
E. Ustinova
Hana Ajakan
Pascal Germain
Hugo Larochelle
François Laviolette
M. Marchand
Victor Lempitsky
GAN
OOD
177
9,332
0
28 May 2015
1