70
11

NeRF-VINS: A Real-time Neural Radiance Field Map-based Visual-Inertial Navigation System

Abstract

Achieving efficient and consistent localization a prior map remains challenging in robotics. Conventional keyframe-based approaches often suffers from sub-optimal viewpoints due to limited field of view (FOV) and/or constrained motion, thus degrading the localization performance. To address this issue, we design a real-time tightly-coupled Neural Radiance Fields (NeRF)-aided visual-inertial navigation system (VINS). In particular, by effectively leveraging the NeRF's potential to synthesize novel views, the proposed NeRF-VINS overcomes the limitations of traditional keyframe-based maps (with limited views) and optimally fuses IMU, monocular images, and synthetically rendered images within an efficient filter-based framework. This tightly-coupled fusion enables efficient 3D motion tracking with bounded errors. We extensively compare the proposed NeRF-VINS against the state-of-the-art methods that use prior map information and demonstrate its ability to perform real-time localization, at over 10 Hz, on a resource-constrained Jetson AGX Orin embedded platform.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.