Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.08590
Cited By
Neural Machine Translation Models Can Learn to be Few-shot Learners
15 September 2023
Raphael Reinauer
P. Simianer
Kaden Uhlig
Johannes E. M. Mosig
Joern Wuebker
LRM
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Machine Translation Models Can Learn to be Few-shot Learners"
6 / 6 papers shown
Title
Multilingual Large Language Model: A Survey of Resources, Taxonomy and Frontiers
Libo Qin
Qiguang Chen
Yuhang Zhou
Zhi Chen
Hai-Tao Zheng
Lizi Liao
Min Li
Wanxiang Che
Philip S. Yu
LRM
55
36
0
07 Apr 2024
Fine-tuning Large Language Models for Domain-specific Machine Translation
Jiawei Zheng
Hanghai Hong
Xiaoli Wang
Jingsong Su
Yonggui Liang
Shikai Wu
ALM
52
32
0
23 Feb 2024
Rethinking Human-like Translation Strategy: Integrating Drift-Diffusion Model with Large Language Models for Machine Translation
Hongbin Na
Zimu Wang
M. Maimaiti
Tong Chen
Wei Wang
Tao Shen
Ling Chen
LRM
25
5
0
16 Feb 2024
Fine-tuning Large Language Models for Adaptive Machine Translation
Yasmin Moslem
Rejwanul Haque
Andy Way
28
25
0
20 Dec 2023
Assessing Translation capabilities of Large Language Models involving English and Indian Languages
Vandan Mujadia
Ashok Urlana
Yash Bhaskar
Penumalla Aditya Pavani
Kukkapalli Shravya
Parameswari Krishnamurthy
D. Sharma
ELM
169
7
0
15 Nov 2023
NeMo: a toolkit for building AI applications using Neural Modules
Oleksii Kuchaiev
Jason Chun Lok Li
Huyen Nguyen
Oleksii Hrinchuk
Ryan Leary
...
Jack Cook
P. Castonguay
Mariya Popova
Jocelyn Huang
Jonathan M. Cohen
211
292
0
14 Sep 2019
1