ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.07593
  4. Cited By
Statistically Valid Variable Importance Assessment through Conditional
  Permutations

Statistically Valid Variable Importance Assessment through Conditional Permutations

14 September 2023
Ahmad Chamma
Denis A. Engemann
Bertrand Thirion
ArXivPDFHTML

Papers citing "Statistically Valid Variable Importance Assessment through Conditional Permutations"

6 / 6 papers shown
Title
Explaining by Removing: A Unified Framework for Model Explanation
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
85
248
0
21 Nov 2020
A general framework for inference on algorithm-agnostic variable
  importance
A general framework for inference on algorithm-agnostic variable importance
B. Williamson
P. Gilbert
N. Simon
M. Carone
FAtt
CML
18
67
0
07 Apr 2020
Aggregation of Multiple Knockoffs
Aggregation of Multiple Knockoffs
Tuan-Binh Nguyen
Jérôme-Alexis Chevalier
Bertrand Thirion
Sylvain Arlot
70
21
0
21 Feb 2020
Unrestricted Permutation forces Extrapolation: Variable Importance
  Requires at least One More Model, or There Is No Free Variable Importance
Unrestricted Permutation forces Extrapolation: Variable Importance Requires at least One More Model, or There Is No Free Variable Importance
Giles Hooker
L. Mentch
Siyu Zhou
66
157
0
01 May 2019
Visualizing the Feature Importance for Black Box Models
Visualizing the Feature Importance for Black Box Models
Giuseppe Casalicchio
Christoph Molnar
B. Bischl
FAtt
38
183
0
18 Apr 2018
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
"Why Should I Trust You?": Explaining the Predictions of Any Classifier
Marco Tulio Ribeiro
Sameer Singh
Carlos Guestrin
FAtt
FaML
1.1K
16,931
0
16 Feb 2016
1