ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.02177
  4. Cited By
A Quantitative Method to Determine What Collisions Are Reasonably
  Foreseeable and Preventable

A Quantitative Method to Determine What Collisions Are Reasonably Foreseeable and Preventable

5 September 2023
Erwin de Gelder
Olaf Op den Camp
ArXiv (abs)PDFHTML

Papers citing "A Quantitative Method to Determine What Collisions Are Reasonably Foreseeable and Preventable"

4 / 4 papers shown
Title
Scenario-based assessment of automated driving systems: How (not) to parameterize scenarios?
Scenario-based assessment of automated driving systems: How (not) to parameterize scenarios?
Erwin de Gelder
Olaf Op den Camp
51
2
0
02 Sep 2024
Collision Avoidance Testing of the Waymo Automated Driving System
Collision Avoidance Testing of the Waymo Automated Driving System
Kristofer D. Kusano
Kurt Beatty
Scott Schnelle
Francesca Favaro
Cam Crary
Trent Victor
70
17
0
15 Dec 2022
Real-World Scenario Mining for the Assessment of Automated Vehicles
Real-World Scenario Mining for the Assessment of Automated Vehicles
Erwin de Gelder
J. Manders
Corrado Grappiolo
J. Paardekooper
Olaf Op den Camp
B. de Schutter
39
23
0
31 May 2020
Towards an Ontology for Scenario Definition for the Assessment of
  Automated Vehicles: An Object-Oriented Framework
Towards an Ontology for Scenario Definition for the Assessment of Automated Vehicles: An Object-Oriented Framework
E. de Gelder
J. Paardekooper
A. Saberi
H. Elrofai
O. Op den Camp.
Steven B. Kraines
J. Ploeg
B. de Schutter
42
49
0
30 Jan 2020
1