ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.01592
  4. Cited By
Les Houches Lectures on Deep Learning at Large & Infinite Width

Les Houches Lectures on Deep Learning at Large & Infinite Width

4 September 2023
Yasaman Bahri
Boris Hanin
Antonin Brossollet
Vittorio Erba
Christian Keup
Rosalba Pacelli
James B. Simon
    AI4CE
ArXivPDFHTML

Papers citing "Les Houches Lectures on Deep Learning at Large & Infinite Width"

3 / 3 papers shown
Title
Gaussian random field approximation via Stein's method with applications
  to wide random neural networks
Gaussian random field approximation via Stein's method with applications to wide random neural networks
Krishnakumar Balasubramanian
L. Goldstein
Nathan Ross
Adil Salim
35
9
0
28 Jun 2023
The large learning rate phase of deep learning: the catapult mechanism
The large learning rate phase of deep learning: the catapult mechanism
Aitor Lewkowycz
Yasaman Bahri
Ethan Dyer
Jascha Narain Sohl-Dickstein
Guy Gur-Ari
ODL
159
236
0
04 Mar 2020
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train
  10,000-Layer Vanilla Convolutional Neural Networks
Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer Vanilla Convolutional Neural Networks
Lechao Xiao
Yasaman Bahri
Jascha Narain Sohl-Dickstein
S. Schoenholz
Jeffrey Pennington
244
350
0
14 Jun 2018
1