Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.01488
Cited By
On the use of Mahalanobis distance for out-of-distribution detection with neural networks for medical imaging
4 September 2023
Harry Anthony
Konstantinos Kamnitsas
Re-assign community
ArXiv (abs)
PDF
HTML
Github (13★)
Papers citing
"On the use of Mahalanobis distance for out-of-distribution detection with neural networks for medical imaging"
21 / 21 papers shown
Title
Mahalanobis++: Improving OOD Detection via Feature Normalization
Maximilian Mueller
Matthias Hein
OODD
114
0
0
23 May 2025
Deciphering the Definition of Adversarial Robustness for post-hoc OOD Detectors
Peter Lorenz
Mario Fernandez
Jens Müller
Ullrich Kothe
AAML
146
1
0
21 Jun 2024
Distance-based detection of out-of-distribution silent failures for Covid-19 lung lesion segmentation
Jiamin Liang
Yuhao Huang
Haoming Li
Shuangchi He
Xindi Hu
Zejian Chen
Isabel Kaltenborn
Dong Ni
OOD
86
45
0
05 Aug 2022
Unknown-Aware Object Detection: Learning What You Don't Know from Videos in the Wild
Xuefeng Du
Xin Eric Wang
Gabriel Gozum
Yixuan Li
OODD
98
92
0
08 Mar 2022
Out of Distribution Detection and Adversarial Attacks on Deep Neural Networks for Robust Medical Image Analysis
Anisie Uwimana
Ransalu Senanayake
OOD
MedIm
52
21
0
10 Jul 2021
Confidence-based Out-of-Distribution Detection: A Comparative Study and Analysis
Christoph Berger
Magdalini Paschali
Ben Glocker
Konstantinos Kamnitsas
OOD
93
45
0
06 Jul 2021
A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
Jie Jessie Ren
Stanislav Fort
J. Liu
Abhijit Guha Roy
Shreyas Padhy
Balaji Lakshminarayanan
UQCV
173
225
0
16 Jun 2021
Does Your Dermatology Classifier Know What It Doesn't Know? Detecting the Long-Tail of Unseen Conditions
Abhijit Guha Roy
Jie Jessie Ren
Shekoofeh Azizi
Aaron Loh
Vivek Natarajan
...
Yun-Hui Liu
taylan. cemgil
Alan Karthikesalingam
Balaji Lakshminarayanan
Jim Winkens
113
107
0
08 Apr 2021
Detecting Outliers with Foreign Patch Interpolation
Jeremy Tan
Benjamin Hou
James Batten
Huaqi Qiu
Bernhard Kainz
MedIm
54
49
0
09 Nov 2020
A Unifying Review of Deep and Shallow Anomaly Detection
Lukas Ruff
Jacob R. Kauffmann
Robert A. Vandermeulen
G. Montavon
Wojciech Samek
Marius Kloft
Thomas G. Dietterich
Klaus-Robert Muller
UQCV
117
800
0
24 Sep 2020
The challenges of deploying artificial intelligence models in a rapidly evolving pandemic
Yipeng Hu
J. Jacob
Geoffrey J. M. Parker
D. Hawkes
J. Hurst
Danail Stoyanov
OOD
40
65
0
19 May 2020
Why is the Mahalanobis Distance Effective for Anomaly Detection?
Ryo Kamoi
Kei Kobayashi
OODD
172
58
0
01 Mar 2020
FRODO: Free rejection of out-of-distribution samples: application to chest x-ray analysis
E. Çallı
K. Murphy
Ecem Sogancioglu
Bram van Ginneken
MedIm
OOD
52
15
0
02 Jul 2019
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison
Jeremy Irvin
Pranav Rajpurkar
M. Ko
Yifan Yu
Silviana Ciurea-Ilcus
...
D. Larson
C. Langlotz
Bhavik Patel
M. Lungren
A. Ng
112
2,602
0
21 Jan 2019
Deep Anomaly Detection with Outlier Exposure
Dan Hendrycks
Mantas Mazeika
Thomas G. Dietterich
OODD
183
1,483
0
11 Dec 2018
Unsupervised domain adaptation for medical imaging segmentation with self-ensembling
C. Perone
P. Ballester
Rodrigo C. Barros
Julien Cohen-Adad
OOD
87
208
0
14 Nov 2018
A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks
Kimin Lee
Kibok Lee
Honglak Lee
Jinwoo Shin
OODD
187
2,060
0
10 Jul 2018
Confounding variables can degrade generalization performance of radiological deep learning models
J. Zech
Marcus A. Badgeley
Manway Liu
A. Costa
J. Titano
Eric K. Oermann
OOD
85
1,179
0
02 Jul 2018
A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks
Dan Hendrycks
Kevin Gimpel
UQCV
166
3,468
0
07 Oct 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
831
9,345
0
06 Jun 2015
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
280
19,107
0
20 Dec 2014
1