Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2309.01156
Cited By
Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics
3 September 2023
Kyle Cranmer
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
P. Shanahan
AI4CE
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Advances in machine-learning-based sampling motivated by lattice quantum chromodynamics"
5 / 5 papers shown
Title
Physics-Driven Learning for Inverse Problems in Quantum Chromodynamics
Gert Aarts
Kenji Fukushima
Tetsuo Hatsuda
Andreas Ipp
S. Shi
Lei Wang
K. Zhou
AI4CE
PINN
129
3
0
09 Jan 2025
On learning higher-order cumulants in diffusion models
Gert Aarts
Diaa E. Habibi
Lei Wang
K. Zhou
87
5
0
28 Oct 2024
Flow-Based Sampling for Entanglement Entropy and the Machine Learning of Defects
Andrea Bulgarelli
E. Cellini
K. Jansen
Stefan Kühn
A. Nada
Shinichi Nakajima
K. Nicoli
M. Panero
82
6
0
18 Oct 2024
Bayesian RG Flow in Neural Network Field Theories
Jessica N. Howard
Marc S. Klinger
Anindita Maiti
A. G. Stapleton
135
2
0
27 May 2024
Sampling using
S
U
(
N
)
SU(N)
S
U
(
N
)
gauge equivariant flows
D. Boyda
G. Kanwar
S. Racanière
Danilo Jimenez Rezende
M. S. Albergo
Kyle Cranmer
D. Hackett
P. Shanahan
90
129
0
12 Aug 2020
1