ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.00472
  4. Cited By
General and Practical Tuning Method for Off-the-Shelf Graph-Based Index:
  SISAP Indexing Challenge Report by Team UTokyo

General and Practical Tuning Method for Off-the-Shelf Graph-Based Index: SISAP Indexing Challenge Report by Team UTokyo

1 September 2023
Yutaro Oguri
Yusuke Matsui
ArXiv (abs)PDFHTML

Papers citing "General and Practical Tuning Method for Off-the-Shelf Graph-Based Index: SISAP Indexing Challenge Report by Team UTokyo"

4 / 4 papers shown
Title
LAION-5B: An open large-scale dataset for training next generation
  image-text models
LAION-5B: An open large-scale dataset for training next generation image-text models
Christoph Schuhmann
Romain Beaumont
Richard Vencu
Cade Gordon
Ross Wightman
...
Srivatsa Kundurthy
Katherine Crowson
Ludwig Schmidt
R. Kaczmarczyk
J. Jitsev
VLMMLLMCLIP
206
3,507
0
16 Oct 2022
Similarity search on neighbor's graphs with automatic Pareto optimal
  performance and minimum expected quality setups based on hyperparameter
  optimization
Similarity search on neighbor's graphs with automatic Pareto optimal performance and minimum expected quality setups based on hyperparameter optimization
Eric Sadit Tellez
Guillermo Ruiz
22
4
0
19 Jan 2022
Optuna: A Next-generation Hyperparameter Optimization Framework
Optuna: A Next-generation Hyperparameter Optimization Framework
Takuya Akiba
Shotaro Sano
Toshihiko Yanase
Takeru Ohta
Masanori Koyama
681
5,885
0
25 Jul 2019
Billion-scale similarity search with GPUs
Billion-scale similarity search with GPUs
Jeff Johnson
Matthijs Douze
Hervé Jégou
288
3,746
0
28 Feb 2017
1