ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2309.00300
  4. Cited By
Towards the Identifiability and Explainability for Personalized Learner
  Modeling: An Inductive Paradigm

Towards the Identifiability and Explainability for Personalized Learner Modeling: An Inductive Paradigm

1 September 2023
Jiatong Li
Qi Liu
Fei-Yue Wang
Jia-Yin Liu
Zhenya Huang
Fangzhou Yao
Linbo Zhu
Yu Su
    AI4Ed
ArXivPDFHTML

Papers citing "Towards the Identifiability and Explainability for Personalized Learner Modeling: An Inductive Paradigm"

3 / 3 papers shown
Title
Language Representation Favored Zero-Shot Cross-Domain Cognitive Diagnosis
Language Representation Favored Zero-Shot Cross-Domain Cognitive Diagnosis
Shuo Liu
Zihan Zhou
Yuanhao Liu
Jing Zhang
Hong Qian
AI4Ed
77
1
0
18 Jan 2025
A Dual-Fusion Cognitive Diagnosis Framework for Open Student Learning
  Environments
A Dual-Fusion Cognitive Diagnosis Framework for Open Student Learning Environments
Yuanhao Liu
Shuo Liu
Yimeng Liu
Jingwen Yang
Hong Qian
AI4Ed
36
0
0
19 Oct 2024
Simple Copy-Paste is a Strong Data Augmentation Method for Instance
  Segmentation
Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation
Golnaz Ghiasi
Huayu Chen
A. Srinivas
Rui Qian
Nayeon Lee
E. D. Cubuk
Quoc V. Le
Barret Zoph
ISeg
252
969
0
13 Dec 2020
1