ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.16466
  4. Cited By
Self-Sampling Meta SAM: Enhancing Few-shot Medical Image Segmentation
  with Meta-Learning

Self-Sampling Meta SAM: Enhancing Few-shot Medical Image Segmentation with Meta-Learning

31 August 2023
Yiming Zhang
Tianang Leng
Kun Han
Xiaohui Xie
ArXivPDFHTML

Papers citing "Self-Sampling Meta SAM: Enhancing Few-shot Medical Image Segmentation with Meta-Learning"

16 / 16 papers shown
Title
TAVP: Task-Adaptive Visual Prompt for Cross-domain Few-shot Segmentation
TAVP: Task-Adaptive Visual Prompt for Cross-domain Few-shot Segmentation
Jiaqi Yang
Ye Huang
Jingxi Hu
Xiangjian He
Linlin Shen
Guoping Qiu
VLM
91
1
0
31 Dec 2024
How to build the best medical image segmentation algorithm using foundation models: a comprehensive empirical study with Segment Anything Model
How to build the best medical image segmentation algorithm using foundation models: a comprehensive empirical study with Segment Anything Model
Han Gu
Haoyu Dong
Jichen Yang
Maciej A. Mazurowski
MedIm
VLM
107
14
0
15 Apr 2024
Can SAM Segment Polyps?
Can SAM Segment Polyps?
Tao Zhou
Yizhe Zhang
Yi Zhou
Ye Wu
Chen Gong
MedIm
45
65
0
15 Apr 2023
Few-shot Medical Image Segmentation with Cycle-resemblance Attention
Few-shot Medical Image Segmentation with Cycle-resemblance Attention
Hao Ding
Changchang Sun
Hao Tang
Dawen Cai
Yan Yan
55
46
0
07 Dec 2022
TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical
  Image Segmentation
TransDeepLab: Convolution-Free Transformer-based DeepLab v3+ for Medical Image Segmentation
Reza Azad
Moein Heidari
M. Shariatnia
Ehsan Khodapanah Aghdam
Sanaz Karimijafarbigloo
Ehsan Adeli
Dorit Merhof
ViT
MedIm
61
95
0
01 Aug 2022
HiFormer: Hierarchical Multi-scale Representations Using Transformers
  for Medical Image Segmentation
HiFormer: Hierarchical Multi-scale Representations Using Transformers for Medical Image Segmentation
Moein Heidari
Amirhossein Kazerouni
Milad Soltany Kadarvish
Reza Azad
Ehsan Khodapanah Aghdam
Julien Cohen-Adad
Dorit Merhof
MedIm
ViT
57
186
0
18 Jul 2022
Vision Transformer Adapter for Dense Predictions
Vision Transformer Adapter for Dense Predictions
Zhe Chen
Yuchen Duan
Wenhai Wang
Junjun He
Tong Lu
Jifeng Dai
Yu Qiao
77
552
0
17 May 2022
MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation
MetaMedSeg: Volumetric Meta-learning for Few-Shot Organ Segmentation
A. Makarevich
Azade Farshad
Vasileios Belagiannis
Nassir Navab
67
10
0
18 Sep 2021
Self-Supervision with Superpixels: Training Few-shot Medical Image
  Segmentation without Annotation
Self-Supervision with Superpixels: Training Few-shot Medical Image Segmentation without Annotation
Cheng Ouyang
C. Biffi
Chen Chen
Turkay Kart
Huaqi Qiu
Daniel Rueckert
77
208
0
20 Jul 2020
CHAOS Challenge -- Combined (CT-MR) Healthy Abdominal Organ Segmentation
CHAOS Challenge -- Combined (CT-MR) Healthy Abdominal Organ Segmentation
A. Emre Kavur
N. Gezer
M. Baris
Sinem Aslan
Pierre-Henri Conze
...
Klaus H. Maier-Hein
G. Akar
Gözde B. Ünal
O. Dicle
M. Alper Selver
78
613
0
17 Jan 2020
FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation
FSS-1000: A 1000-Class Dataset for Few-Shot Segmentation
Xiang Li
Tianhan Wei
Yau Pun Chen
Yu-Wing Tai
Chi-Keung Tang
VLM
61
245
0
29 Jul 2019
'Squeeze & Excite' Guided Few-Shot Segmentation of Volumetric Images
'Squeeze & Excite' Guided Few-Shot Segmentation of Volumetric Images
Abhijit Guha Roy
Shayan Siddiqui
Sebastian Polsterl
Nassir Navab
Christian Wachinger
88
185
0
04 Feb 2019
Attention U-Net: Learning Where to Look for the Pancreas
Attention U-Net: Learning Where to Look for the Pancreas
Ozan Oktay
Jo Schlemper
Loic Le Folgoc
M. J. Lee
M. Heinrich
...
Jingyu Sun
Nils Y. Hammerla
Bernhard Kainz
Ben Glocker
Daniel Rueckert
SSeg
138
4,994
0
11 Apr 2018
Interactive Medical Image Segmentation using Deep Learning with
  Image-specific Fine-tuning
Interactive Medical Image Segmentation using Deep Learning with Image-specific Fine-tuning
Guotai Wang
Wenqi Li
Maria A. Zuluaga
R. Pratt
P. Patel
...
T. Doel
A. David
Jan Deprest
Sebastien Ourselin
Tom Vercauteren
73
689
0
11 Oct 2017
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
781
11,793
0
09 Mar 2017
Deep Interactive Object Selection
Deep Interactive Object Selection
N. Xu
Brian L. Price
Scott D. Cohen
Jimei Yang
Thomas Huang
49
427
0
13 Mar 2016
1