ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.14335
  4. Cited By
Improved learning theory for kernel distribution regression with two-stage sampling

Improved learning theory for kernel distribution regression with two-stage sampling

28 January 2025
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
ArXivPDFHTML

Papers citing "Improved learning theory for kernel distribution regression with two-stage sampling"

24 / 24 papers shown
Title
Wasserstein Spatial Depth
Wasserstein Spatial Depth
François Bachoc
Alberto González Sanz
Jean-Michel Loubes
Yisha Yao
66
1
0
16 Nov 2024
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth
  Costs
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth Costs
Alberto González Sanz
Shayan Hundrieser
OT
39
10
0
16 May 2023
Gaussian Processes on Distributions based on Regularized Optimal
  Transport
Gaussian Processes on Distributions based on Regularized Optimal Transport
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
GP
OT
53
8
0
12 Oct 2022
Weak limits of entropy regularized Optimal Transport; potentials, plans
  and divergences
Weak limits of entropy regularized Optimal Transport; potentials, plans and divergences
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
43
23
0
15 Jul 2022
An improved central limit theorem and fast convergence rates for
  entropic transportation costs
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
46
34
0
19 Apr 2022
Distribution Regression with Sliced Wasserstein Kernels
Distribution Regression with Sliced Wasserstein Kernels
Dimitri Meunier
Massimiliano Pontil
C. Ciliberto
OOD
30
16
0
08 Feb 2022
Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein
Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein
Marco Cuturi
Laetitia Meng-Papaxanthos
Yingtao Tian
Charlotte Bunne
Geoff Davis
O. Teboul
OT
184
105
0
28 Jan 2022
Bernstein-Type Bounds for Beta Distribution
Bernstein-Type Bounds for Beta Distribution
Maciej Skorski
96
22
0
06 Jan 2021
Minimax Confidence Intervals for the Sliced Wasserstein Distance
Minimax Confidence Intervals for the Sliced Wasserstein Distance
Tudor Manole
Sivaraman Balakrishnan
Larry A. Wasserman
135
36
0
17 Sep 2019
Minimax estimation of smooth densities in Wasserstein distance
Minimax estimation of smooth densities in Wasserstein distance
Jonathan Niles-Weed
Quentin Berthet
OT
34
38
0
05 Feb 2019
Distribution regression model with a Reproducing Kernel Hilbert Space
  approach
Distribution regression model with a Reproducing Kernel Hilbert Space approach
T. T. T. Bui
Jean-Michel Loubes
Risser
Balaresque
41
11
0
27 Jun 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
213
2,147
0
01 Mar 2018
Sliced Wasserstein Distance for Learning Gaussian Mixture Models
Sliced Wasserstein Distance for Learning Gaussian Mixture Models
Soheil Kolouri
Gustavo K. Rohde
Heiko Hoffmann
43
123
0
15 Nov 2017
A Gaussian Process Regression Model for Distribution Inputs
A Gaussian Process Regression Model for Distribution Inputs
François Bachoc
Fabrice Gamboa
Jean-Michel Loubes
N. Venet
68
52
0
31 Jan 2017
Understanding the 2016 US Presidential Election using ecological
  inference and distribution regression with census microdata
Understanding the 2016 US Presidential Election using ecological inference and distribution regression with census microdata
Seth Flaxman
Danica J. Sutherland
Yu Wang
Yee Whye Teh
23
24
0
11 Nov 2016
Uncertain programming model for multi-item solid transportation problem
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
104
64
0
31 May 2016
Sliced Wasserstein Kernels for Probability Distributions
Sliced Wasserstein Kernels for Probability Distributions
Soheil Kolouri
Yang Zou
Gustavo K. Rohde
39
161
0
10 Nov 2015
Learning Theory for Distribution Regression
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
58
138
0
08 Nov 2014
Fast Distribution To Real Regression
Fast Distribution To Real Regression
Junier B. Oliva
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
63
45
0
10 Nov 2013
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation
  Distances
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
209
4,259
0
04 Jun 2013
Distribution-Free Distribution Regression
Distribution-Free Distribution Regression
Barnabás Póczós
Alessandro Rinaldo
Aarti Singh
Larry A. Wasserman
82
99
0
01 Feb 2013
Nearly root-n approximation for regression quantile processes
Nearly root-n approximation for regression quantile processes
S. Portnoy
55
29
0
03 Oct 2012
Learning from Distributions via Support Measure Machines
Learning from Distributions via Support Measure Machines
Krikamol Muandet
Kenji Fukumizu
Francesco Dinuzzo
Bernhard Schölkopf
107
198
0
29 Feb 2012
Adaptive Bayesian estimation using a Gaussian random field with inverse
  Gamma bandwidth
Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth
Van der Vaart
V. Zanten
107
254
0
25 Aug 2009
1