Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.14335
Cited By
Improved learning theory for kernel distribution regression with two-stage sampling
28 January 2025
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improved learning theory for kernel distribution regression with two-stage sampling"
24 / 24 papers shown
Title
Wasserstein Spatial Depth
François Bachoc
Alberto González Sanz
Jean-Michel Loubes
Yisha Yao
66
1
0
16 Nov 2024
Weak Limits for Empirical Entropic Optimal Transport: Beyond Smooth Costs
Alberto González Sanz
Shayan Hundrieser
OT
39
10
0
16 May 2023
Gaussian Processes on Distributions based on Regularized Optimal Transport
François Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
GP
OT
53
8
0
12 Oct 2022
Weak limits of entropy regularized Optimal Transport; potentials, plans and divergences
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
43
23
0
15 Jul 2022
An improved central limit theorem and fast convergence rates for entropic transportation costs
E. del Barrio
Alberto González Sanz
Jean-Michel Loubes
Jonathan Niles-Weed
OT
46
34
0
19 Apr 2022
Distribution Regression with Sliced Wasserstein Kernels
Dimitri Meunier
Massimiliano Pontil
C. Ciliberto
OOD
30
16
0
08 Feb 2022
Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein
Marco Cuturi
Laetitia Meng-Papaxanthos
Yingtao Tian
Charlotte Bunne
Geoff Davis
O. Teboul
OT
184
105
0
28 Jan 2022
Bernstein-Type Bounds for Beta Distribution
Maciej Skorski
96
22
0
06 Jan 2021
Minimax Confidence Intervals for the Sliced Wasserstein Distance
Tudor Manole
Sivaraman Balakrishnan
Larry A. Wasserman
135
36
0
17 Sep 2019
Minimax estimation of smooth densities in Wasserstein distance
Jonathan Niles-Weed
Quentin Berthet
OT
34
38
0
05 Feb 2019
Distribution regression model with a Reproducing Kernel Hilbert Space approach
T. T. T. Bui
Jean-Michel Loubes
Risser
Balaresque
41
11
0
27 Jun 2018
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
213
2,147
0
01 Mar 2018
Sliced Wasserstein Distance for Learning Gaussian Mixture Models
Soheil Kolouri
Gustavo K. Rohde
Heiko Hoffmann
43
123
0
15 Nov 2017
A Gaussian Process Regression Model for Distribution Inputs
François Bachoc
Fabrice Gamboa
Jean-Michel Loubes
N. Venet
68
52
0
31 Jan 2017
Understanding the 2016 US Presidential Election using ecological inference and distribution regression with census microdata
Seth Flaxman
Danica J. Sutherland
Yu Wang
Yee Whye Teh
23
24
0
11 Nov 2016
Uncertain programming model for multi-item solid transportation problem
Hasan Dalman
104
64
0
31 May 2016
Sliced Wasserstein Kernels for Probability Distributions
Soheil Kolouri
Yang Zou
Gustavo K. Rohde
39
161
0
10 Nov 2015
Learning Theory for Distribution Regression
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
58
138
0
08 Nov 2014
Fast Distribution To Real Regression
Junier B. Oliva
Willie Neiswanger
Barnabás Póczós
J. Schneider
Eric Xing
63
45
0
10 Nov 2013
Sinkhorn Distances: Lightspeed Computation of Optimal Transportation Distances
Marco Cuturi
OT
209
4,259
0
04 Jun 2013
Distribution-Free Distribution Regression
Barnabás Póczós
Alessandro Rinaldo
Aarti Singh
Larry A. Wasserman
82
99
0
01 Feb 2013
Nearly root-n approximation for regression quantile processes
S. Portnoy
55
29
0
03 Oct 2012
Learning from Distributions via Support Measure Machines
Krikamol Muandet
Kenji Fukumizu
Francesco Dinuzzo
Bernhard Schölkopf
107
198
0
29 Feb 2012
Adaptive Bayesian estimation using a Gaussian random field with inverse Gamma bandwidth
Van der Vaart
V. Zanten
107
254
0
25 Aug 2009
1