ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.13504
  4. Cited By
A2Q: Accumulator-Aware Quantization with Guaranteed Overflow Avoidance

A2Q: Accumulator-Aware Quantization with Guaranteed Overflow Avoidance

25 August 2023
Ian Colbert
Alessandro Pappalardo
Jakoba Petri-Koenig
    MQ
ArXivPDFHTML

Papers citing "A2Q: Accumulator-Aware Quantization with Guaranteed Overflow Avoidance"

6 / 6 papers shown
Title
Shedding the Bits: Pushing the Boundaries of Quantization with
  Minifloats on FPGAs
Shedding the Bits: Pushing the Boundaries of Quantization with Minifloats on FPGAs
Shivam Aggarwal
Hans Jakob Damsgaard
Alessandro Pappalardo
Giuseppe Franco
Thomas B. Preußer
Michaela Blott
Tulika Mitra
MQ
19
5
0
21 Nov 2023
Deep Neural Networks for Encrypted Inference with TFHE
Deep Neural Networks for Encrypted Inference with TFHE
Andrei Stoian
Jordan Fréry
Roman Bredehoft
Luis Montero
Celia Kherfallah
Benoît Chevallier-Mames
FedML
35
21
0
13 Feb 2023
An Energy-Efficient Edge Computing Paradigm for Convolution-based Image
  Upsampling
An Energy-Efficient Edge Computing Paradigm for Convolution-based Image Upsampling
Ian Colbert
Ken Kreutz-Delgado
Srinjoy Das
41
4
0
15 Jul 2021
Sparsity in Deep Learning: Pruning and growth for efficient inference
  and training in neural networks
Sparsity in Deep Learning: Pruning and growth for efficient inference and training in neural networks
Torsten Hoefler
Dan Alistarh
Tal Ben-Nun
Nikoli Dryden
Alexandra Peste
MQ
141
684
0
31 Jan 2021
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision
  Applications
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
Andrew G. Howard
Menglong Zhu
Bo Chen
Dmitry Kalenichenko
Weijun Wang
Tobias Weyand
M. Andreetto
Hartwig Adam
3DH
950
20,567
0
17 Apr 2017
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
195
5,176
0
16 Sep 2016
1