Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.13157
Cited By
Federated Learning in IoT: a Survey from a Resource-Constrained Perspective
25 August 2023
Ishmeet Kaur
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Learning in IoT: a Survey from a Resource-Constrained Perspective"
18 / 18 papers shown
Title
TimelyFL: Heterogeneity-aware Asynchronous Federated Learning with Adaptive Partial Training
Tuo Zhang
Lei Gao
Sunwoo Lee
Mi Zhang
Salman Avestimehr
FedML
67
30
0
14 Apr 2023
Generative Data Augmentation for Non-IID Problem in Decentralized Clinical Machine Learning
Zirui Wang
Shaoming Duan
Chengyue Wu
Wenhao Lin
Xin-Xiang Zha
Peiyi Han
Chuanyi Liu
MedIm
46
4
0
02 Dec 2022
Achieving Personalized Federated Learning with Sparse Local Models
Tiansheng Huang
Shiwei Liu
Li Shen
Fengxiang He
Weiwei Lin
Dacheng Tao
FedML
73
44
0
27 Jan 2022
FedBalancer: Data and Pace Control for Efficient Federated Learning on Heterogeneous Clients
Jaemin Shin
Yuanchun Li
Yunxin Liu
Sung-Ju Lee
FedML
48
74
0
05 Jan 2022
FedZKT: Zero-Shot Knowledge Transfer towards Resource-Constrained Federated Learning with Heterogeneous On-Device Models
Lan Zhang
Dapeng Wu
Xiaoyong Yuan
FedML
55
48
0
08 Sep 2021
FedAT: A High-Performance and Communication-Efficient Federated Learning System with Asynchronous Tiers
Zheng Chai
Yujing Chen
Ali Anwar
Liang Zhao
Yue Cheng
Huzefa Rangwala
FedML
53
123
0
12 Oct 2020
HeteroFL: Computation and Communication Efficient Federated Learning for Heterogeneous Clients
Enmao Diao
Jie Ding
Vahid Tarokh
FedML
96
556
0
03 Oct 2020
An Efficient Framework for Clustered Federated Learning
Avishek Ghosh
Jichan Chung
Dong Yin
Kannan Ramchandran
FedML
65
858
0
07 Jun 2020
UVeQFed: Universal Vector Quantization for Federated Learning
Nir Shlezinger
Mingzhe Chen
Yonina C. Eldar
H. Vincent Poor
Shuguang Cui
FedML
MQ
54
227
0
05 Jun 2020
TRP: Trained Rank Pruning for Efficient Deep Neural Networks
Yuhui Xu
Yuxi Li
Shuai Zhang
W. Wen
Botao Wang
Y. Qi
Yiran Chen
Weiyao Lin
H. Xiong
AAML
60
71
0
30 Apr 2020
Adaptive Federated Optimization
Sashank J. Reddi
Zachary B. Charles
Manzil Zaheer
Zachary Garrett
Keith Rush
Jakub Konecný
Sanjiv Kumar
H. B. McMahan
FedML
174
1,434
0
29 Feb 2020
FedMD: Heterogenous Federated Learning via Model Distillation
Daliang Li
Junpu Wang
FedML
88
854
0
08 Oct 2019
Client-Edge-Cloud Hierarchical Federated Learning
Lumin Liu
Jun Zhang
S. H. Song
Khaled B. Letaief
FedML
79
742
0
16 May 2019
Quantizing deep convolutional networks for efficient inference: A whitepaper
Raghuraman Krishnamoorthi
MQ
136
1,015
0
21 Jun 2018
Adaptive Federated Learning in Resource Constrained Edge Computing Systems
Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
K. Leung
C. Makaya
T. He
Kevin S. Chan
242
1,706
0
14 Apr 2018
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
392
17,453
0
17 Feb 2016
Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding
Song Han
Huizi Mao
W. Dally
3DGS
253
8,832
0
01 Oct 2015
Speeding-up Convolutional Neural Networks Using Fine-tuned CP-Decomposition
V. Lebedev
Yaroslav Ganin
M. Rakhuba
Ivan Oseledets
Victor Lempitsky
61
884
0
19 Dec 2014
1