Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.11443
Cited By
Revisiting and Exploring Efficient Fast Adversarial Training via LAW: Lipschitz Regularization and Auto Weight Averaging
22 August 2023
Xiaojun Jia
YueFeng Chen
Xiaofeng Mao
Ranjie Duan
Jindong Gu
Rong Zhang
H. Xue
Xiaochun Cao
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Revisiting and Exploring Efficient Fast Adversarial Training via LAW: Lipschitz Regularization and Auto Weight Averaging"
5 / 5 papers shown
Title
Mitigating the Backdoor Effect for Multi-Task Model Merging via Safety-Aware Subspace
Jinluan Yang
Anke Tang
Didi Zhu
Zhengyu Chen
Li Shen
Fei Wu
MoMe
AAML
62
3
0
17 Oct 2024
How Smooth Is Attention?
Valérie Castin
Pierre Ablin
Gabriel Peyré
AAML
40
9
0
22 Dec 2023
Make Some Noise: Reliable and Efficient Single-Step Adversarial Training
Pau de Jorge
Adel Bibi
Riccardo Volpi
Amartya Sanyal
Philip H. S. Torr
Grégory Rogez
P. Dokania
AAML
51
45
0
02 Feb 2022
On the Convergence and Robustness of Adversarial Training
Yisen Wang
Xingjun Ma
James Bailey
Jinfeng Yi
Bowen Zhou
Quanquan Gu
AAML
194
345
0
15 Dec 2021
Adversarial Camouflage: Hiding Physical-World Attacks with Natural Styles
Ranjie Duan
Xingjun Ma
Yisen Wang
James Bailey
•. A. K. Qin
Yun Yang
AAML
167
224
0
08 Mar 2020
1