ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.11110
  4. Cited By
A novel analysis of utility in privacy pipelines, using Kronecker
  products and quantitative information flow

A novel analysis of utility in privacy pipelines, using Kronecker products and quantitative information flow

22 August 2023
Mário S. Alvim
Natasha Fernandes
Annabelle McIver
Carroll Morgan
Gabriel H. Nunes
ArXivPDFHTML

Papers citing "A novel analysis of utility in privacy pipelines, using Kronecker products and quantitative information flow"

5 / 5 papers shown
Title
The Privacy-Utility Trade-off in the Topics API
The Privacy-Utility Trade-off in the Topics API
Mário S. Alvim
Natasha Fernandes
Annabelle McIver
Gabriel H. Nunes
28
0
0
21 Jun 2024
SoK: A Review of Differentially Private Linear Models For
  High-Dimensional Data
SoK: A Review of Differentially Private Linear Models For High-Dimensional Data
Amol Khanna
Edward Raff
Nathan Inkawhich
18
4
0
01 Apr 2024
Benchmarking Private Population Data Release Mechanisms: Synthetic Data
  vs. TopDown
Benchmarking Private Population Data Release Mechanisms: Synthetic Data vs. TopDown
Aadyaa Maddi
Swadhin Routray
Alexander Goldberg
Giulia Fanti
31
0
0
31 Jan 2024
Summary Statistic Privacy in Data Sharing
Summary Statistic Privacy in Data Sharing
Zinan Lin
Shuaiqi Wang
Vyas Sekar
Giulia Fanti
43
7
0
03 Mar 2023
Opacus: User-Friendly Differential Privacy Library in PyTorch
Opacus: User-Friendly Differential Privacy Library in PyTorch
Ashkan Yousefpour
I. Shilov
Alexandre Sablayrolles
Davide Testuggine
Karthik Prasad
...
Sayan Gosh
Akash Bharadwaj
Jessica Zhao
Graham Cormode
Ilya Mironov
VLM
168
350
0
25 Sep 2021
1