ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.10373
  4. Cited By
HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds

HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds

20 August 2023
Hejia Geng
Peng Li
    AAML
ArXivPDFHTML

Papers citing "HoSNN: Adversarially-Robust Homeostatic Spiking Neural Networks with Adaptive Firing Thresholds"

44 / 44 papers shown
Title
Flashy Backdoor: Real-world Environment Backdoor Attack on SNNs with DVS
  Cameras
Flashy Backdoor: Real-world Environment Backdoor Attack on SNNs with DVS Cameras
Roberto Riaño
Gorka Abad
S. Picek
A. Urbieta
AAML
75
0
0
05 Nov 2024
Robust Stable Spiking Neural Networks
Robust Stable Spiking Neural Networks
Jianhao Ding
Zhiyu Pan
Yujia Liu
Zhaofei Yu
Tiejun Huang
AAML
76
7
0
31 May 2024
Enhancing Adversarial Robustness in SNNs with Sparse Gradients
Enhancing Adversarial Robustness in SNNs with Sparse Gradients
Yujia Liu
Tong Bu
Jianhao Ding
Zecheng Hao
Tiejun Huang
Zhaofei Yu
AAML
76
5
0
30 May 2024
Adversarially Robust Spiking Neural Networks Through Conversion
Adversarially Robust Spiking Neural Networks Through Conversion
Ozan Özdenizci
Robert Legenstein
AAML
56
10
0
15 Nov 2023
Attacking the Spike: On the Transferability and Security of Spiking
  Neural Networks to Adversarial Examples
Attacking the Spike: On the Transferability and Security of Spiking Neural Networks to Adversarial Examples
Nuo Xu
Kaleel Mahmood
Haowen Fang
Ethan Rathbun
Caiwen Ding
Wujie Wen
AAML
57
13
0
07 Sep 2022
Toward Robust Spiking Neural Network Against Adversarial Perturbation
Toward Robust Spiking Neural Network Against Adversarial Perturbation
Ling Liang
Kaidi Xu
Xing Hu
Lei Deng
Yuan Xie
AAML
50
16
0
12 Apr 2022
HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep
  Spiking Neural Networks by Training with Crafted Input Noise
HIRE-SNN: Harnessing the Inherent Robustness of Energy-Efficient Deep Spiking Neural Networks by Training with Crafted Input Noise
Souvik Kundu
Massoud Pedram
Peter A. Beerel
AAML
68
75
0
06 Oct 2021
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Detecting Adversarial Examples Is (Nearly) As Hard As Classifying Them
Florian Tramèr
AAML
71
68
0
24 Jul 2021
Securing Deep Spiking Neural Networks against Adversarial Attacks
  through Inherent Structural Parameters
Securing Deep Spiking Neural Networks against Adversarial Attacks through Inherent Structural Parameters
Rida El-Allami
Alberto Marchisio
Mohamed Bennai
Ihsen Alouani
AAML
56
39
0
09 Dec 2020
Opportunities and Challenges in Deep Learning Adversarial Robustness: A
  Survey
Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey
S. Silva
Peyman Najafirad
AAML
OOD
47
134
0
01 Jul 2020
Towards Understanding the Effect of Leak in Spiking Neural Networks
Towards Understanding the Effect of Leak in Spiking Neural Networks
Sayeed Shafayet Chowdhury
Chankyu Lee
Kaushik Roy
44
57
0
15 Jun 2020
Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects
  of Discrete Input Encoding and Non-Linear Activations
Inherent Adversarial Robustness of Deep Spiking Neural Networks: Effects of Discrete Input Encoding and Non-Linear Activations
Saima Sharmin
Nitin Rathi
Priyadarshini Panda
Kaushik Roy
AAML
136
89
0
23 Mar 2020
Reliable evaluation of adversarial robustness with an ensemble of
  diverse parameter-free attacks
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
213
1,842
0
03 Mar 2020
Temporal Spike Sequence Learning via Backpropagation for Deep Spiking
  Neural Networks
Temporal Spike Sequence Learning via Backpropagation for Deep Spiking Neural Networks
Wenrui Zhang
Peng Li
71
220
0
24 Feb 2020
Rapid online learning and robust recall in a neuromorphic olfactory
  circuit
Rapid online learning and robust recall in a neuromorphic olfactory circuit
N. Imam
T. A. Cleland
52
141
0
17 Jun 2019
A Comprehensive Analysis on Adversarial Robustness of Spiking Neural
  Networks
A Comprehensive Analysis on Adversarial Robustness of Spiking Neural Networks
Saima Sharmin
Priyadarshini Panda
Syed Shakib Sarwar
Chankyu Lee
Wachirawit Ponghiran
Kaushik Roy
AAML
44
67
0
07 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
89
1,839
0
06 May 2019
Adversarial Defense by Restricting the Hidden Space of Deep Neural
  Networks
Adversarial Defense by Restricting the Hidden Space of Deep Neural Networks
Aamir Mustafa
Salman Khan
Munawar Hayat
Roland Göcke
Jianbing Shen
Ling Shao
AAML
56
152
0
01 Apr 2019
Enabling Spike-based Backpropagation for Training Deep Neural Network
  Architectures
Enabling Spike-based Backpropagation for Training Deep Neural Network Architectures
Chankyu Lee
Syed Shakib Sarwar
Priyadarshini Panda
G. Srinivasan
Kaushik Roy
76
396
0
15 Mar 2019
On Evaluating Adversarial Robustness
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
81
901
0
18 Feb 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
83
319
0
29 Jan 2019
Surrogate Gradient Learning in Spiking Neural Networks
Surrogate Gradient Learning in Spiking Neural Networks
Emre Neftci
Hesham Mostafa
Friedemann Zenke
87
1,236
0
28 Jan 2019
Failing Loudly: An Empirical Study of Methods for Detecting Dataset
  Shift
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift
Stephan Rabanser
Stephan Günnemann
Zachary Chase Lipton
54
367
0
29 Oct 2018
Adversarial Attacks and Defences: A Survey
Adversarial Attacks and Defences: A Survey
Anirban Chakraborty
Manaar Alam
Vishal Dey
Anupam Chattopadhyay
Debdeep Mukhopadhyay
AAML
OOD
69
679
0
28 Sep 2018
Long short-term memory and learning-to-learn in networks of spiking
  neurons
Long short-term memory and learning-to-learn in networks of spiking neurons
G. Bellec
Darjan Salaj
Anand Subramoney
Robert Legenstein
Wolfgang Maass
137
487
0
26 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing
  Defenses to Adversarial Examples
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
216
3,185
0
01 Feb 2018
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A
  Survey
Threat of Adversarial Attacks on Deep Learning in Computer Vision: A Survey
Naveed Akhtar
Ajmal Mian
AAML
93
1,868
0
02 Jan 2018
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
122
1,409
0
08 Dec 2017
Mitigating Adversarial Effects Through Randomization
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
113
1,058
0
06 Nov 2017
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning
  Algorithms
Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
Han Xiao
Kashif Rasul
Roland Vollgraf
280
8,878
0
25 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
301
12,063
0
19 Jun 2017
Spatio-Temporal Backpropagation for Training High-performance Spiking
  Neural Networks
Spatio-Temporal Backpropagation for Training High-performance Spiking Neural Networks
Yujie Wu
Lei Deng
Guoqi Li
Jun Zhu
Luping Shi
62
1,021
0
08 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection
  Methods
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
118
1,857
0
20 May 2017
Ensemble Adversarial Training: Attacks and Defenses
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,725
0
19 May 2017
On Detecting Adversarial Perturbations
On Detecting Adversarial Perturbations
J. H. Metzen
Tim Genewein
Volker Fischer
Bastian Bischoff
AAML
61
950
0
14 Feb 2017
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based
  Localization
Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization
Ramprasaath R. Selvaraju
Michael Cogswell
Abhishek Das
Ramakrishna Vedantam
Devi Parikh
Dhruv Batra
FAtt
294
19,981
0
07 Oct 2016
Robustness of classifiers: from adversarial to random noise
Robustness of classifiers: from adversarial to random noise
Alhussein Fawzi
Seyed-Mohsen Moosavi-Dezfooli
P. Frossard
AAML
87
374
0
31 Aug 2016
Adversarial examples in the physical world
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
534
5,897
0
08 Jul 2016
Transferability in Machine Learning: from Phenomena to Black-Box Attacks
  using Adversarial Samples
Transferability in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial Samples
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
SILM
AAML
112
1,740
0
24 May 2016
DeepFool: a simple and accurate method to fool deep neural networks
DeepFool: a simple and accurate method to fool deep neural networks
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
P. Frossard
AAML
148
4,895
0
14 Nov 2015
Explaining and Harnessing Adversarial Examples
Explaining and Harnessing Adversarial Examples
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
271
19,045
0
20 Dec 2014
Very Deep Convolutional Networks for Large-Scale Image Recognition
Very Deep Convolutional Networks for Large-Scale Image Recognition
Karen Simonyan
Andrew Zisserman
FAtt
MDE
1.6K
100,330
0
04 Sep 2014
Intriguing properties of neural networks
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
268
14,912
1
21 Dec 2013
Visualizing and Understanding Convolutional Networks
Visualizing and Understanding Convolutional Networks
Matthew D. Zeiler
Rob Fergus
FAtt
SSL
589
15,876
0
12 Nov 2013
1