Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.06964
Cited By
How inter-rater variability relates to aleatoric and epistemic uncertainty: a case study with deep learning-based paraspinal muscle segmentation
14 August 2023
Parinaz Roshanzamir
H. Rivaz
Joshua Ahn
Hamza Mirza
Neda Naghdi
Meagan Anstruther
M. C. Battié
M. Fortin
Yiming Xiao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"How inter-rater variability relates to aleatoric and epistemic uncertainty: a case study with deep learning-based paraspinal muscle segmentation"
6 / 6 papers shown
Title
A Review of Bayesian Uncertainty Quantification in Deep Probabilistic Image Segmentation
M. Valiuddin
R. V. Sloun
C.G.A. Viviers
Peter H. N. de With
Fons van der Sommen
UQCV
96
1
0
25 Nov 2024
Trustworthy clinical AI solutions: a unified review of uncertainty quantification in deep learning models for medical image analysis
Benjamin Lambert
Florence Forbes
A. Tucholka
Senan Doyle
Harmonie Dehaene
M. Dojat
34
81
0
05 Oct 2022
A Quantitative Comparison of Epistemic Uncertainty Maps Applied to Multi-Class Segmentation
Robin Camarasa
D. Bos
J. Hendrikse
P. Nederkoorn
D. Epidemiology
D. Neurology
Department of Computer Science
UQCV
29
12
0
22 Sep 2021
Recalibration of Aleatoric and Epistemic Regression Uncertainty in Medical Imaging
M. Laves
Sontje Ihler
J. F. Fast
L. Kahrs
T. Ortmaier
OOD
UQCV
BDL
43
29
0
26 Apr 2021
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1