ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.05999
  4. Cited By
Does AI for science need another ImageNet Or totally different
  benchmarks? A case study of machine learning force fields

Does AI for science need another ImageNet Or totally different benchmarks? A case study of machine learning force fields

11 August 2023
Yatao Li
Wanling Gao
Lei Wang
Lixin Sun
Zun Wang
Jianfeng Zhan
ArXivPDFHTML

Papers citing "Does AI for science need another ImageNet Or totally different benchmarks? A case study of machine learning force fields"

1 / 1 papers shown
Title
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate
  Interatomic Potentials
E(3)-Equivariant Graph Neural Networks for Data-Efficient and Accurate Interatomic Potentials
Simon L. Batzner
Albert Musaelian
Lixin Sun
Mario Geiger
J. Mailoa
M. Kornbluth
N. Molinari
Tess E. Smidt
Boris Kozinsky
233
1,240
0
08 Jan 2021
1