Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.03363
Cited By
A reading survey on adversarial machine learning: Adversarial attacks and their understanding
7 August 2023
Shashank Kotyan
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A reading survey on adversarial machine learning: Adversarial attacks and their understanding"
31 / 31 papers shown
Title
Deep neural network loses attention to adversarial images
Shashank Kotyan
Danilo Vasconcellos Vargas
AAML
GAN
37
4
0
10 Jun 2021
Color Channel Perturbation Attacks for Fooling Convolutional Neural Networks and A Defense Against Such Attacks
Jayendra Kantipudi
S. Dubey
Soumendu Chakraborty
AAML
64
21
0
20 Dec 2020
Bullseye Polytope: A Scalable Clean-Label Poisoning Attack with Improved Transferability
H. Aghakhani
Dongyu Meng
Yu-Xiang Wang
Christopher Kruegel
Giovanni Vigna
AAML
63
104
0
01 May 2020
Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
Francesco Croce
Matthias Hein
AAML
211
1,837
0
03 Mar 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
Aleksander Madry
AAML
240
831
0
19 Feb 2020
Simple iterative method for generating targeted universal adversarial perturbations
Hokuto Hirano
Kazuhiro Takemoto
AAML
58
32
0
15 Nov 2019
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
67
346
0
14 Jun 2019
Bypassing Backdoor Detection Algorithms in Deep Learning
T. Tan
Reza Shokri
FedML
AAML
63
151
0
31 May 2019
Adversarial Examples Are Not Bugs, They Are Features
Andrew Ilyas
Shibani Santurkar
Dimitris Tsipras
Logan Engstrom
Brandon Tran
Aleksander Madry
SILM
87
1,836
0
06 May 2019
HopSkipJumpAttack: A Query-Efficient Decision-Based Attack
Jianbo Chen
Michael I. Jordan
Martin J. Wainwright
AAML
61
666
0
03 Apr 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
67
211
0
21 Feb 2019
On Evaluating Adversarial Robustness
Nicholas Carlini
Anish Athalye
Nicolas Papernot
Wieland Brendel
Jonas Rauber
Dimitris Tsipras
Ian Goodfellow
Aleksander Madry
Alexey Kurakin
ELM
AAML
79
901
0
18 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
130
2,028
0
08 Feb 2019
Adversarial Robustness Toolbox v1.0.0
Maria-Irina Nicolae
M. Sinn
Minh-Ngoc Tran
Beat Buesser
Ambrish Rawat
...
Nathalie Baracaldo
Bryant Chen
Heiko Ludwig
Ian Molloy
Ben Edwards
AAML
VLM
72
458
0
03 Jul 2018
Adversarial vulnerability for any classifier
Alhussein Fawzi
Hamza Fawzi
Omar Fawzi
AAML
70
249
0
23 Feb 2018
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks
J. Uesato
Brendan O'Donoghue
Aaron van den Oord
Pushmeet Kohli
AAML
145
601
0
15 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
189
3,180
0
01 Feb 2018
Adversarial Patch
Tom B. Brown
Dandelion Mané
Aurko Roy
Martín Abadi
Justin Gilmer
AAML
70
1,094
0
27 Dec 2017
Wild Patterns: Ten Years After the Rise of Adversarial Machine Learning
Battista Biggio
Fabio Roli
AAML
100
1,407
0
08 Dec 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
102
1,400
0
31 Oct 2017
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples
Pin-Yu Chen
Yash Sharma
Huan Zhang
Jinfeng Yi
Cho-Jui Hsieh
AAML
64
641
0
13 Sep 2017
BadNets: Identifying Vulnerabilities in the Machine Learning Model Supply Chain
Tianyu Gu
Brendan Dolan-Gavitt
S. Garg
SILM
96
1,770
0
22 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
271
12,029
0
19 Jun 2017
A Closer Look at Memorization in Deep Networks
Devansh Arpit
Stanislaw Jastrzebski
Nicolas Ballas
David M. Krueger
Emmanuel Bengio
...
Tegan Maharaj
Asja Fischer
Aaron Courville
Yoshua Bengio
Simon Lacoste-Julien
TDI
120
1,814
0
16 Jun 2017
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
Nicholas Carlini
D. Wagner
AAML
118
1,854
0
20 May 2017
On the (Statistical) Detection of Adversarial Examples
Kathrin Grosse
Praveen Manoharan
Nicolas Papernot
Michael Backes
Patrick McDaniel
AAML
73
712
0
21 Feb 2017
Universal adversarial perturbations
Seyed-Mohsen Moosavi-Dezfooli
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
130
2,525
0
26 Oct 2016
Towards Evaluating the Robustness of Neural Networks
Nicholas Carlini
D. Wagner
OOD
AAML
228
8,548
0
16 Aug 2016
Adversarial examples in the physical world
Alexey Kurakin
Ian Goodfellow
Samy Bengio
SILM
AAML
517
5,893
0
08 Jul 2016
Learning with a Strong Adversary
Ruitong Huang
Bing Xu
Dale Schuurmans
Csaba Szepesvári
AAML
74
358
0
10 Nov 2015
Intriguing properties of neural networks
Christian Szegedy
Wojciech Zaremba
Ilya Sutskever
Joan Bruna
D. Erhan
Ian Goodfellow
Rob Fergus
AAML
241
14,893
1
21 Dec 2013
1