Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
2308.02219
Cited By
Federated Learning: Organizational Opportunities, Challenges, and Adoption Strategies
4 August 2023
J. Delgado-Fernandez
Martin Brennecke
Tom Josua Barbereau
Alexander Rieger
Gilbert Fridgen
FedML
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Federated Learning: Organizational Opportunities, Challenges, and Adoption Strategies"
8 / 8 papers shown
Title
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
Sarthak Pati
Ujjwal Baid
Brandon Edwards
Micah J. Sheller
Shih-Han Wang
...
Prashant Shah
Bjoern Menze
J. Barnholtz-Sloan
Jason Martin
Spyridon Bakas
FedML
AI4CE
101
214
0
22 Apr 2022
Decentralized Federated Learning through Proxy Model Sharing
Shivam Kalra
Junfeng Wen
Jesse C. Cresswell
M. Volkovs
Hamid R. Tizhoosh
FedML
51
96
0
22 Nov 2021
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Chenhao Xu
Youyang Qu
Yong Xiang
Longxiang Gao
FedML
145
252
0
09 Sep 2021
Demystifying the Draft EU Artificial Intelligence Act
Michael Veale
Frederik J. Zuiderveen Borgesius
63
352
0
08 Jul 2021
Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models
Lasse F. Wolff Anthony
Benjamin Kanding
Raghavendra Selvan
HAI
54
312
0
06 Jul 2020
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
126
1,897
0
08 Oct 2016
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
194
6,113
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
390
17,453
0
17 Feb 2016
1