ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2308.02219
  4. Cited By
Federated Learning: Organizational Opportunities, Challenges, and
  Adoption Strategies

Federated Learning: Organizational Opportunities, Challenges, and Adoption Strategies

4 August 2023
J. Delgado-Fernandez
Martin Brennecke
Tom Josua Barbereau
Alexander Rieger
Gilbert Fridgen
    FedML
    AI4CE
ArXivPDFHTML

Papers citing "Federated Learning: Organizational Opportunities, Challenges, and Adoption Strategies"

8 / 8 papers shown
Title
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
Federated Learning Enables Big Data for Rare Cancer Boundary Detection
Sarthak Pati
Ujjwal Baid
Brandon Edwards
Micah J. Sheller
Shih-Han Wang
...
Prashant Shah
Bjoern Menze
J. Barnholtz-Sloan
Jason Martin
Spyridon Bakas
FedML
AI4CE
101
214
0
22 Apr 2022
Decentralized Federated Learning through Proxy Model Sharing
Decentralized Federated Learning through Proxy Model Sharing
Shivam Kalra
Junfeng Wen
Jesse C. Cresswell
M. Volkovs
Hamid R. Tizhoosh
FedML
51
96
0
22 Nov 2021
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Asynchronous Federated Learning on Heterogeneous Devices: A Survey
Chenhao Xu
Youyang Qu
Yong Xiang
Longxiang Gao
FedML
145
252
0
09 Sep 2021
Demystifying the Draft EU Artificial Intelligence Act
Demystifying the Draft EU Artificial Intelligence Act
Michael Veale
Frederik J. Zuiderveen Borgesius
63
352
0
08 Jul 2021
Carbontracker: Tracking and Predicting the Carbon Footprint of Training
  Deep Learning Models
Carbontracker: Tracking and Predicting the Carbon Footprint of Training Deep Learning Models
Lasse F. Wolff Anthony
Benjamin Kanding
Raghavendra Selvan
HAI
54
312
0
06 Jul 2020
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
126
1,897
0
08 Oct 2016
Deep Learning with Differential Privacy
Deep Learning with Differential Privacy
Martín Abadi
Andy Chu
Ian Goodfellow
H. B. McMahan
Ilya Mironov
Kunal Talwar
Li Zhang
FedML
SyDa
194
6,113
0
01 Jul 2016
Communication-Efficient Learning of Deep Networks from Decentralized
  Data
Communication-Efficient Learning of Deep Networks from Decentralized Data
H. B. McMahan
Eider Moore
Daniel Ramage
S. Hampson
Blaise Agüera y Arcas
FedML
390
17,453
0
17 Feb 2016
1